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Complex air pollution problems have resulted in considerable adverse impacts on the environment, human health, 

and economy in China. However, owing to strict regulations since 2013, the air quality has been greatly improved. 

Now, the prevention of air pollution has entered a critical stage in combination with climate change mitigation 

in China. Accurate seasonal to interannual prediction of air pollution (haze, surface O 3 , and sandstorms) could 

support the government in planning for air pollution control on an annual basis. Scientists from all over the world 

have made great progress in understanding climate change and the variability of air pollution and associated 

physical mechanisms in China, which has provided a scientific basis for the development of climate prediction 

of air pollution. This paper reviews the progress made in air-pollution climate prediction, and gives some critical 

insights including update of predictand, change of predictability, and development of coupled model. 
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. Introduction 

Regional and complex air pollution has become one of the main en-

ironmental and health issues in China. The number of haze days pre-

ented an increasing trend during 1973–2017 ( Li et al., 2019b ). Since

013, the annual mean concentration of fine particles with diameters

 2.5 𝜇m (PM 2.5 ) has dramatically decreased due to emission reduc-

ions and energy structure optimization ( Zhang et al., 2019 ; Zhang and

eng, 2020 ). However, the concentration of ground-level ozone (O 3 )

ersistently increased from 2014 to 2019, partly because of mismatch-

ng changes in volatile organic compounds (VOCs) and nitrogen oxides

NO x ), and decreased PM 2.5 ( Li et al., 2019a , 2020 ). In the spring of

021, North China suffered from super sandstorms (PM 10 > 7000 μg

 

− 3 ), a phenomenon that had not occurred for more than a decade

 Yin et al, 2021b ). 

The variation in air pollution consists of long-term trend,

nterannual-decadal and synoptic variation, which stores various de-
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rees of predictability. The long-term trend and its changes in air pollu-

ion are to a great extent determined by direct emissions from human ac-

ivities and accompanying indirect effects from atmospheric anomalies

ith global warming ( Fig. 1 ). In addition, haze and surface O 3 pollution

lso show significant interannual-decadal variations, which are closely

elated to climate anomalies ( Fig. 1 ) and are the main forecasting ob-

ects of climate prediction ( Yin and Wang, 2016 , 2017 ; Yin et al., 2020a ).

or example, atmospheric anomalies were one of the main causes of the

0% rebound in PM 2.5 under intensified air pollution prevention in win-

er 2018 with respect to 2017 ( Yin and Zhang, 2020 ). The meteorologi-

al conditions can change the natural emissions of precursors ( Lu et al.,

019 ), photochemical reactions ( Wang et al., 2017 ), and transportation

 Gong et al., 2020 ) to influence regional concentrations of O 3 and deter-

ine shifts in the dominant spatial patterns of O 3 pollution in eastern

hina ( Yin and Ma, 2020 ) ( Fig. 1 (b)). As for dust weather, a strong Mon-

olian cyclone in spring can blow and transport large amounts of sand
Ai Communications Co. Ltd. This is an open access article under the CC 
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Fig. 1. Variation in (a) winter mean PM 2.5 and (b) summer mean O 3 con- 

centrations in North China and possible sources of climate predictability. The 

reanalysis data for the PM 2.5 and O 3 were from site observations (black; 

https://www.aqistudy.cn/historydata/ ), CAQRA (blue; Chinese Air Quality Re- 

analysis dataset, https://doi.org/10.11922/sciencedb.00053 ), TAP (red; Track- 

ing Air Pollution in China dataset, http://tapdata.org.cn ), and a virtual PM 2.5 ob- 

servation network (green). Factors that influence the interannual-decadal vari- 

ation and long-term trend of (a) PM 2.5 and (b) O 3 pollution and an indication of 

the potential sources of predictability are summarized in the upper half of each 

panel. 
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articles from the bare and loose ground into North China ( Huang et al.,

008 ). 

Atmospheric chemical processes play critical roles in the occurrence

f heavy-pollution events, and yet their impacts on the interannual-

ecadal variation of air pollution have not been thoroughly assessed.

uring the COVID-19 quarantines in February 2020, the chemical for-

ation of secondary pollutants partly offset the reduction in primary

missions and contributed to several severe PM 2.5 and O 3 pollution

pisodes in North China ( Hu et al., 2021 ; Tang et al., 2021 ; Zhang et al.,

021 ). In addition, interactions such as those between the meteorology

nd emissions, PM 2.5 and O 3 , and short- and long-life particles, are im-

ortant in determining monthly and seasonal levels of air pollution. 

It is well documented that preceding external forcings have signifi-

ant impacts on the interannual-decadal variability of winter haze, sum-

er O 3 , and spring dust ( Fig. 2 ). Arctic sea ice ( Wang et al., 2015 ),

urasian snow and soil moisture ( Zou et al., 2017 ), the sea surface tem-

erature (SST) in the Pacific ( He et al., 2019 ) and Atlantic ( Xiao et al.,

015 ), and the forcing of the Tibetan Plateau ( Ma et al., 2020 ) can solely
2 
nd jointly influence the variations of haze days in North China (HD NC )

 Yin et al., 2020b ) ( Fig. 2 (a)). When most of these preceding factors are

n-phase, large anomalies of the number of HD NC . The phenomenon of

he in-phase has happened a lot in these years, accompanied by large

nomalies of HD NC . To the best of our knowledge, there have been fewer

tudies on the climate factors influencing surface O 3 in China than those

f haze. Anomalies of late-spring Arctic sea ice and Eurasian snow could

timulate Rossby-wave-like trains to influence the variability of O 3 pol-

ution in North China ( Yin et al., 2019 , 2021a ). The southern Indian

cean dipole could store its thermodynamic signals in the subsurface

nd influence the dipole pattern of O 3 pollution in the east of China

 Ma and Yin, 2021 ) ( Fig. 2 (b)). Anomalies of sea-ice shift in the Barents

nd Kara seas and the SSTs in the eastern Pacific and northwestern At-

antic have been identified to induce tremendous dust sources around

ongolia, which is an essential material basis of spring dust ( Yin et al.,

021b ). 

The prevention of air pollution has entered a critical stage in China

nd requires better support from the perspective of climate prediction.

ccurate real-time climate prediction of air pollution could support the

overnment in planning for air pollution control on an annual basis;

hat is, to determine whether extra emission reductions are required to

ounteract the adverse climate effects in advance. However, theories

nd methods related to the prediction of air pollution are still in an

xploratory stage and in need of further research and discoveries. 

. Progress 

.1. Prediction of haze 

Because of the “memory ” effect in slow-varying external forc-

ngs, preceding climate factors influence the HD NC and store effi-

ient predictive information (Table S1; Yin and Wang, 2016 ). Yin and

ang (2016) issued a seasonal prediction model of winter haze in North

hina. In this model, the predictand and predictors were the year-

o-year difference (DY) instead of climate anomalies. The root-mean-

quare error (RMSE) and explained variance of the multi-linear regres-

ion (MLR) prediction model was 3.39 days and 53%, respectively. Fur-

hermore, the changing trend and the extrema were successfully repro-

uced. To some extent, the nonlinear relationships are also important

or climate predictions. The preceding DY of SST around Gulf of Alaska

nd the sea ice of the Beaufort Sea, which nonlinearly contribute to the

ariation of HD NC , were addressed by the generalized additive model

pproach to predict HD NC . The long-term trend and turning points were

imulated well and the percentage of the same sign (PSS) was quite high

uring recycling independent tests ( Yin and Wang, 2017 ). 

With regards to Yangtze River Delta (YRD), a seasonal nonlinear grey

ernoulli model was developed to provide skillful forecasts for the PM 2.5 

oncentrations in Shanghai, Hangzhou, Nanjing, and Hefei ( Zhou et al.,

020 ). The level of accuracy was high in both training and testing pe-

iods and one possible reason could be that this model grasps the sea-

onality during its initial design. Based on this verified model, the air

uality of four cities was predicted to be better than before. The DY

pproach was also applied to predict the number of haze days in the

RD (HD YRD ) in each month of winter ( Dong et al., 2021 ). The RMSE,

SS, and explained variance were 2.76 days, 97.3%, and 79.04%, re-

pectively, indicating good predictive skill. Chang et al. (2021) found

hat regional stratospheric warming over northeastern Asia in Novem-

er influenced haze pollution in the Sichuan Basin in 5–7 weeks and de-

eloped a prediction model with a correlation coefficient (CC) of 0.57

n the hindcast of early-winter haze. Similarly, August–October mean

iño3.4 index and three other identified predictors were used to predict

inter haze days in South China and could explain 90% of the total vari-

nce ( Cheng et al., 2019 ). PM 2.5 in Fuzhou was forecasted by the Auto

egressive Integrated Moving Average model 1–24 months in advance

 Zhang et al., 2018 ). Gao et al. (2019) found the preceding autumn El

https://www.aqistudy.cn/historydata/
https://doi.org/10.11922/sciencedb.00053
http://tapdata.org.cn
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Fig. 2. Schematic diagram of the impacts of preceding climate factors on (a) winter haze pollution, (b) summer surface O 3 pollution, and (c) spring dust weather in 

North China. 
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iño and Antarctic Oscillation could predict the aerosol optical depth

ver northern India (CC = 0.78). 

.2. Prediction of surface O 3 

Surface O 3 concentrations have been observed since 1980 in the

astern United States and the sequence length possibly supports climate

rediction. High summer O 3 is correlated with previous-spring positive

ST anomalies in the tropical Atlantic and negative SST anomalies in the

ortheastern Pacific, as well as higher sea level pressure over Hawaii and

ower sea level pressure anomalies over the Atlantic and North Amer-

ca. Based on these climate anomalies, a statistical model was developed
3 
o predict summer-mean daily maximum 8-h average O 3 concentrations

MDA8 O 3 ) in the eastern United States, which successfully explained

45% of the variability ( Shen and Mickley, 2017 ). 

Ground-level O 3 concentrations have been extensively observed

ince 2014 in China, but this time scale cannot support climate predic-

ion of O 3 pollution. As mentioned, climate factors could significantly

odulate the O 3 concentrations in summer. The O 3 weather index, an

ptimized proxy dataset, was predicted by Yin et al. (2019) . Higher O 3 

eather index indicated the climate conditions were beneficial for the

roduction of surface O 3 . Based on the DY approach, observed preced-

ng predictors were used to establish the MLR prediction model (Table

1; Yin et al., 2020b ). Further absorbing information from the NCEP Cli-
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ate Forecast System (CFS), the PSS of this statistical–dynamical hybrid

odel was 93.9% and the CC between the observation and predicted val-

es was 0.84. With improving performances in the most recent decade,

his model has considerable potential to execute real-time seasonal pre-

ictions of O 3 pollution. 

.3. Prediction of dust weather 

Based on the previous summer’s vegetation in North China, the win-

er Antarctic Oscillation and sea ice over the Barents Sea, the frequency

f spring dust weather has been successfully predicted. Further deriv-

ng a spring 850-hPa geopotential height index from CFS, a dynamical–

tatistical hybrid prediction model produced a hindcast correlation of

.82 and successfully reproduced the trend of spring dust frequency (Ta-

le S1; Ji and Fan, 2019 ). The winter and spring climate, especially the

ir temperature and precipitation, was predicted and used for forecast-

ng the frequency and intensity of dust weather in spring ( Wang et al.,

003 ). Some mathematical models, such as support vector machines, the

ector autoregressive moving average, autoregressive integrated mov-

ng average ( Garcia Nieto et al., 2017 ), and gray model ( Wu et al., 2019 ;

hou et al. 2020 ) have also been used to forecast the average PM 10 con-

entration. However, seasonal forecasting of PM 10 is still in a relatively

reliminary stage. 

. Insights 

.1. Changing predictand 

Closely related to record-breaking haze pollution in winter 2012, an

bservation network of atmospheric compositions was constructed in

hina and has been taking shape since 2014. The pollutant concentra-

ion is the major monitoring and weather-forecasting variable that is fa-

iliar to decision makers and the public. However, the length of concen-

ration data is insufficient for establishing long-term standing prediction

odels, and thus most of previous studies have attempted to predict the

umber of polluted days. Since 2020, some high-resolution reanalysis

atasets of air pollution have been successively released. These reanal-

sis data try to combine information from multiple sources, including

round observations, satellite retrievals, emission inventories, air qual-

ty simulations from chemical transport models, and so on ( Geng et al.,

021 ; Kong et al., 2021 ; Gui et al., 2020 ). More importantly, some pub-

icly downloadable datasets (e.g., the Tracking Air Pollution in China

ataset, TAP) provide long-term records of the PM 2.5 concentration ( > 20

r) and increase the possibility to directly predict pollutant concentra-

ions on the climatological time scale. However, the ground-level O 3 

oncentration has only been recorded since 2013. As shown in Fig. 1 and

ig. S1, the spatiotemporal resolution and data quality vary regionally

nd differ among different kinds of reanalysis datasets. These reanalysis

atasets have higher uncertainties before the construction of the China

ational monitoring network (i.e., before 2013). Furthermore, little is

nown about the quality of the derived PM 2.5 data during 2000–2013

ue to a lack of direct site observations, although machine learning ap-

roaches could fit optimal results to a great certain extent. It is emer-

ent to assess the availability of the developing air pollution reanalysis

atasets and the possibility to incorporate pollutant concentrations into

he predictand of climate prediction. 

.2. Predictability 

In most of seasonal to interannual predictions, meteorological con-

itions are essential predictors to forecast air pollution in China. These

ocumented relationships could simulate the number of haze days from

979–2012 well; however, Yin et al. (2020b) illustrated the same MLR

ailed to reproduce the variations during 1979–2018. On the daily time

cale, the CCs between MLR-fitted and observed PM 2.5 concentrations

ere around 0.7 in each year ( Fig. 3 (a)) and illustrated robust impacts
4 
f meteorology on winter PM 2.5 concentrations from 2014 to 2019. The

ontradiction between the interannual and synoptic relationships might

e caused by the intensified air pollution management since 2013. When

he MLR model was trained by daily data in a specific year, the emis-

ions baseline of this year was implicitly expressed in the coefficients of

eteorological factors. To verify this speculation, a fixed model was fit-

ed that only depended on data in 2014, and was then used to simulate

aily PM 2.5 concentrations with meteorological elements from 2014 to

019. In Fig. 3 (b), the simulated winter mean PM 2.5 is quite close to

he observation in 2014 and the difference becomes larger along with

ime. A percentage value, defined as (observed − simulated) / observed

M 2.5 , was used to simply represent the impact of emission changes,

hich also linearly increased and was independent of the specific train-

ng year ( Fig. 3 (c)). This is because anthropogenic emissions signifi-

antly reduced after the implementation of China’s Air Pollution Pre-

ention and Control Action Plan. However, this information cannot be

ontained in the coefficients of a fixed statistical model. 

As for the O 3 concentrations, the CCs with daily meteorological

hanges were also robust from 2014 to 2020 and even higher than

hose of haze ( Fig. 3 (d)). In Fig. 3 (e, f), the differences and percent-

ges shift from negative to positive. In the early stages, the reductions

n primary pollutants (particularly NO x ) induced improvement in the

urface O 3 conditions. However, along with sustained emissions reduc-

ion, the mismatched changes of NO x and VOCs and the decreased PM 2.5 

oth enhanced the O 3 concentrations in North China ( Li et al., 2021 ).

he reduction of PM 2.5 is conducive to the production of O 3 by scaveng-

ng hydroperoxy and NO x radicals, which then cause the increase in O 3 

oncentrations ( Li et al., 2019a , 2020 ). Furthermore, the changes in O 3 

ere also closely related to the formaldehyde concentration ( Ling et al.,

017 ). Although the varied range of O 3 was smaller than that of PM 2.5 ,

t must influence the climate predictability of O 3 pollution, which needs

rgent and further research. As for dust weather, its frequency in north-

rn China featured two high-frequency periods (1966–1979 and 2000–

014) during the period 1966–2014 ( Fan et al., 2016 ). After an absence

f sandstorms for more than 10 years, strong sandstorms reoccurred in

pring of 2021 ( Yin et al., 2021b ). These decadal changes of dust vari-

bility must have substantial influences on the predictability of dust

eather or sandstorms. Therefore, information on rapid changes in hu-

an activities and decadal changes of climate should be considered and

ontained in air pollution prediction models in later work. 

.3. Coupled climate model targeted at routine predictions of air pollution 

Modern weather forecasting and climate prediction are almost com-

letely reliant on high-performance computing of atmospheric physical

quations with accurate descriptions of initial conditions ( WMO, 2021 ).

umerical climate models need to manage the complex spheres of the

arth system and integrate for days, months, and years. In recent years,

tmospheric chemical models advanced greatly, but most of them were

ot designed for climate prediction. Thus, it is necessary to design

nd construct a coupled numerical model targeted at routine seasonal

o interannual predictions of air pollution. Such a climate–chemical

oupled model must reasonably describe the sources and sinks of at-

ospheric chemical compositions as well as complex processes of the

arth system and further successfully treat the multi-source uncertain-

ies ( An et al., 2018 ). Alternatively, another possible way is to utilize

 regional climate–chemical model that re-predicts and downscales the

oncentrations of air pollution from a global model. 

Critical issues must be solved or improved, as follows: ( ⅰ ) Tradi-

ional numerical models elaborate the strong convection process, but

ittle consideration is given to the stable boundary layer that closely

elates to air pollution ( Zhang et al., 2012 ). Thus, the parameteriza-

ion scheme for the stable boundary layer must be improved in both

he climate and chemical modules. ( ⅱ ) Data assimilation of atmospheric

omposition (using reanalysis, vertical Lidar observations and remote

ensing satellite data) is very likely to be a powerful tool to provide bet-
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Fig. 3. (a) Correlation coefficients (CCs) between daily observed PM 2.5 and values fitted with closely related meteorology in North China in winter, and (d) CCs 

between daily observed MDA8 O 3 and fitted values in summer. (b) The winter-mean observed (solid) and predicted (dashed) PM 2.5 from 2014 to 2019, and (e) 

observed (solid) and predicted (dashed) summer-mean MDA8 O 3 from 2014 to 2020. The seasonal mean predicted value was calculated from daily predictions. The 

daily simulations dependent on a fixed MLR model trained with data in 2014 (MT2014) but calculated with real meteorology in each year. The percentage, defined 

as (observed − predicted) / observed (c) PM 2.5 , (f) MDA8 O 3 . The predictions were from the MT2014 model (black) and other MT year models (colors), and the solid 

dots mark the year when the fixed model is based on. Daily atmospheric reanalysis data (1° × 1°) were downloaded from the fifth generation European Center for 

Medium Range Weather Forecasts (Copernicus Climate Change Service) dataset. 
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er initial conditions ( Zhu et al., 2018 ). ( ⅲ ) The formation and growth

f new atmospheric particles and secondary aerosols are important er-

or sources in synoptic chemistry models, let alone climate prediction,

o it is necessary to make clear associated change mechanisms and de-

cribe them in numerical models. Machine learning methods are prob-

bly helpful for the initialization of climate models, improvement of

arameterization, utilization of fuzzy understanding, and so on. ( ⅳ )

ore concerns should be given to the interactions among multi-time-

cale climate variabilities and multi-scale dynamics, as this will certainly

ontribute to the seamless prediction of basic meteorological variables

nd also to rational simulations of short- and long-life aerosols. ( ⅴ ) In

ost current routine seasonal-to-interannual climate forecast models,

he human activities are set as fixed parameters and cannot respond in

 timely manner to rapid changes in emissions that happened during the

OVID-19 quarantines and are about to happen under carbon neutrality.

ear-real-time emissions inventories and modules of carbon and nitro-

en cycles will greatly favor the real-time prediction of PM 2.5 and O 3 

ollution. 

To the best of our knowledge, routine predictions of air pollution are

onsiderably lacking in China. The Center for Climate System Predic-

ion Research (CCSP, supported by the National Natural Science Foun-

ation of China) direct predict the number of haze days in China and

ave provided the advice to relevant government departments since

016 ( Wang et al., 2020 ). The Beijing Climate Center also operate a Cli-

ate Prediction System of Atmospheric Pollution Potential to monitor

nd predict meteorological dispersion conditions, and have reported the
5 
rediction results jointly with the China National Environmental Mon-

toring Centre of the Ministry of Ecology and Environment since 2018

 http://cmdp.ncc-cma.net/climate/disaster.php ). According to this re-

iew, literature related to the climate prediction of air pollution is also

carce and restricted in the development of prediction models. There-

ore, it is meaningful and urgent to boost collaborative innovations

o study the scientific issues posed in this study and to develop pre-

iction approaches. Furthermore, the associated health effects and im-

acts should be considered holistically in the future, and thus scien-

ific support to governments will be immediately useful and enduringly

trong. 

unding 

This research was supported by the National Natural Science Foun-

ation of China [grant numbers 42088101, 91744311, 42025502, and

1991283]. 

uthors’ contribution 

Wang H. J. designed this research and revised the manuscript. Yin Z.

. and the remaining co-authors performed associated calculations and

repared the manuscript. 

eclaration of Competing Interest 

The authors declare no conflict of interest. 

http://cmdp.ncc-cma.net/climate/disaster.php


Z. Yin, H. Wang, H. Liao et al. Atmospheric and Oceanic Science Letters 15 (2022) 100131 

S

 

t

R

A  

 

C  

 

C  

 

 

D  

 

F  

 

G  

 

G  

 

 

G  

 

G  

 

G  

 

 

H  

 

 

H  

 

 

H  

 

 

J  

 

K  

 

 

L  

 

L  

 

L  

 

L  

 

 

L  

 

L  

 

 

M  

 

 

M  

 

S  

 

T  

 

W  

W  

 

W  

 

W  

 

 

W  

 

W  

X  

 

Y  

 

Y  

Y  

 

Y  

 

Y  

 

Y  

 

Y  

Y  

 

Y  

 

 

Z  

 

Z  

Z  

 

 

Z  

 

Z  

 

Z  

 

Z  

 

Z  
upplementary material 

Supplementary material associated with this article can be found, in

he online version, at 10.1016/j.aosl.2021.100131 . 

eferences 

n, J., Chen, Y., Qu, Y., Chen, Q., Zhuang, B., Zhang, P., Wu, Q., et al., 2018. An online-

coupled unified air quality forecasting model system. Adv. Earth Sci. 33, 445–454.

doi: 10.11867/j.issn.1001-8166.2018.05.0445 . 

hang, L.Y., Wu, Z.W., Xu, J.M., 2021. Contribution of Northeastern Asian stratospheric

warming to subseasonal prediction of the early winter haze pollution in Sichuan Basin.

China. Sci. Total Environ. 751, 141823. doi: 10.1016/j.scitotenv.2020.141823 . 

heng, X.G., Boiyo, R., Zhao, T.L., Xu, X.D., Gong, S.L., Xie, X.N., Shang, K., 2019.

Climate modulation of Niño3.4 SST-anomalies on air quality change in southern

China: application to seasonal forecast of haze pollution. Atmos. Res. 225, 157–164.

doi: 10.1016/j.atmosres.2019.04.002 . 

ong, Y., Yin, Z.C., Duan, M.K., 2021. Seasonal prediction of winter haze

days in the Yangtze River Delta. Trans. Atmos. Sci. 44, 290–301.

doi: 10.13878/j.cnki.dqkxxb.20200525001 , (in Chinese) . 

an, K., Xie, Z.M., Xu, Z.Q., 2016. Two different periods of high dust weather

frequency in northern China. Atmos. Ocean. Sci. Lett. 9 (4), 263–269.

doi: 10.1080/16742834.2016.1176300 . 

ao, M., Sherman, P., Song, S.J., Yu, Y.Y., Wu, Z.W., McElroy, M.B., 2019. Seasonal pre-

diction of Indian wintertime aerosol pollution using the ocean memory effect. Sci.

Adv. 5, eaav4157. doi: 10.1126/sciadv.aav4157 . 

arcia Nieto, P.J., Sanchez Lasheras, F., Garcia-Gonzalo, E., de Cos Juez, F.J., 2017. PM10

concentration forecasting in the metropolitan area of Oviedo (Northern Spain) using

models based on SVM, MLP, VARMA and ARIMA: a case study. Sci. Total Environ.

621, 753–761. doi: 10.1016/j.scitotenv.2017.11.291 . 

eng, G., Xiao, Q., Liu, S., Liu, X., Cheng, J., Zheng, Y., Tong, D., et al., 2021. Tracking air

pollution in China: Near real-time PM 2.5 retrievals from multiple data sources (under

review). 

ong, C., Liao, H., Zhang, L., Yue, X., Dang, R.J., Yang, Y. , 2020. Persistent ozone pollu-

tion episodes in North China exacerbated by regional transport. Environ. Pollut. 265,

115056. doi: 10.1016/j.envpol.2020.115056 . 

ui, K., Che, H., Zeng, Z., Wang, Y., Zhai, S., Wang, Z., Luo, M., et al. , 2020. Construction

of a virtual PM2.5 observation network in China based on high-density surface me-

teorological observations using the Extreme Gradient Boosting model. Environ. Int.

141, 105801. doi: 10.1016/j.envint.2020.105801 . 

e, C., Liu, R., Wang, X.M., Liu, S.C., Zhou, T.J., Liao, W.H., 2019. How

does El Nino-Southern Oscillation modulate the interannual variability of win-

ter haze days over eastern China? Sci. Total Environ. 651, 1892–1902.

doi: 10.1016/j.scitotenv.2018.10.100 . 

u, J., Pan, Y., He, Y., Chi, X., Zhang, Q., Song, T., Shen, W. , 2021. Changes in air pollu-

tants during the COVID-19 lockdown in Beijing: Insights from a machine-learning

technique and implications for future control policy. Atmos. Ocean. Sci. Lett. 14,

100060. doi: 10.1016/j.aosl.2021.100060 . 

uang, J., Minnis, P., Chen, B., Huang, Z., Liu, Z., Zhao, Q., Yi, Y., Ayers, J.K.,

2008. Long-range transport and vertical structure of Asian dust from CALIPSO

and surface measurements during PACDEX. J. Geophys. Res. 113. doi: 10.1029/

2008jd010620 . 

i, L., Fan, K., 2019. Climate prediction of dust weather frequency over northern

China based on sea-ice cover and vegetation variability. Clim. Dyn. 53, 687–705.

doi: 10.1007/s00382-018-04608-w . 

ong, L., Tang, X., Zhu, J., Wang, Z., Li, J., Wu, H., Wu, Q., et al., 2021. A 6-year-long

(2013–2018) high-resolution air quality reanalysis dataset in China based on the as-

similation of surface observations from CNEMC. Earth System Sci. Data 13, 529–570.

doi: 10.5194/essd-13-529-2021 . 

i, K., Jacob, D.J., Shen, L., Lu, X., De Smedt, I., Liao, H., 2020. Increases in surface ozone

pollution in China from 2013 to 2019: anthropogenic and meteorological influences.

Atmos. Chem. Phys. 20, 11423–11433. doi: 10.5194/acp-20-11423-2020 . 

i, K., Jacob, D.J., Liao, H., Zhu, J., Shah, V., Shen, L., Bates, K.H., Zhang, Q., Zhai, S.X.,

2019a. A two-pollutant strategy for improving ozone and particulate air quality in

China. Nat. Geosci. 12, 906–910. doi: 10.1038/s41561-019-0464-x . 

i, K., Jacob, D.J., Liao, H., Qiu, Y.L., Shen, L., Zhai, S.X., Bates, K.H., et al., 2021. Ozone

pollution in the North China Plain spreading into the late-winter haze season. Proc.

Natl. Acad Sci. U.S.A. 118, e2015797118. doi: 10.1073/pnas.2015797118 . 

i, Y., Xue, Y., Guang, J., de Leeuw, G., Self, R., She, L., Fan, C., Xie, Y.Q., Chen, G.L.

, 2019b. Spatial and temporal distribution characteristics of haze days and as-

sociated factors in China from 1973 to 2017. Atmos. Environ. 214, 116862.

doi: 10.1016/j.atmosenv.2019.116862 . 

ing, Z.H., Zhao, J., Fan, S.J., Wang, X.M., 2017. Sources of formaldehyde and their contri-

butions to photochemical O 3 formation at an urban site in the Pearl River Delta, south-

ern China. Chemosphere 168, 1293–1301. doi: 10.1016/j.chemosphere.2016.11.140 . 

u, X., Zhang, L., Chen, Y.F., Zhou, M., Zheng, B., Li, K., Liu, Y.M., Lin, J.T., Fu, T.-M.,

Zhang, Q., 2019. Exploring 2016–2017 surface ozone pollution over China: source

contributions and meteorological influences. Atmos. Chem. Phys. 19, 8339–8361.

doi: 10.5194/acp-19-8339-2019 . 

a, X.D., Xu, X.D., Cheng, X.H., Zhao, T.L., Dong, L.L., Zhao, Y., Sun, X.Y., 2020.

Association of climate-related total atmospheric energy anomalies in the tibetan
6 
plateau with haze in Eastern China. Aerosol Air Quality Res. 20, 810–819.

doi: 10.4209/aaqr.2020.02.0044 . 

a, X. Q., Yin, Z. C., 2021. Dipole pattern of summer ozone pollution in the east of China

and its connection with climate variability. Atmos. Chem. Phys. 21, 16349–16361.

doi: 10.5194/acp-21-16349-2021 . 

hen, L., Mickley, L.J., 2017. Seasonal prediction of US summertime ozone using statistical

analysis of large scale climate patterns. Proc. Natl. Acad. Sci. U. S. A. 114, 2491–2496.

doi: 10.1073/pnas.1610708114 . 

ang, R., Huang, X., Zhou, D., Wang, H., Xu, J., Ding, A. , 2021. Global air quality

change during the COVID-19 pandemic: regionally different ozone pollution responses

COVID-19. Atmos.Ocean. Sci. Lett. 14, 100015. doi: 10.1016/j.aosl.2020.100015 . 

ang, H.J., Chen, H.P., Liu, J.P., 2015. Arctic sea ice decline intensified haze pollution in

eastern China. Atmos. Ocean. Sci. Lett. 8 (1), 1–9. doi: 10.3878/AOSL20140081 . 

ang, H.J., Lang, X.M., Zhou, G.Q., Kang, D.J., 2003. A preliminary report of the model

prediction on the forthcoming winter and spring dust climate over China. Chin J.

Atmos. Sci. 27, 136–140. doi: 10.3878/j.issn.1006-9895.2003.01.13 , (in Chinese) . 

ang, H.J., Ren, H.L., Chen, H.P., Ma, J.H., Tian, B.Q., Sun, B., Huang, Y.Y., et al., 2020.

Highlights of climate prediction study and operation in China over the past decades.

Acta Meteorologica Sinica 78, 317–331. doi: 10.11676/qxxb2020.022 , (in Chinese) . 

ang, T., Xue, L.K., Brimblecombe, P., Lam, Y.F., Li, L., Zhang, L., 2017.

Ozone pollution in China: A review of concentrations, meteorological influ-

ences, chemical precursors, and effects. Sci. Total Environ. 575, 1582–1596.

doi: 10.1016/j.scitotenv.2016.10.081 . 

MO (world meteorological organization), 2021. White Paper on the future of

weather and climate forecasting. https://public.wmo.int/en/media/press-release/

white-paper-future-of-weather-and-climate-forecasting . 

u, L.F., Li, N., Zhao, T., 2019. Using the seasonal FGM(1,1) model to predict the air

quality indicators in Xingtai and Handan. Environ. Sci. Pollut. Res. Int. 26, 14683–

14688. doi: 10.1007/s11356-019-04715-z . 

iao, D., Li, Y., Fan, S.J., Zhang, R.H., Sun, J.R., Wang, Y., 2015. Plausible influence of

Atlantic Ocean SST anomalies on winter haze in China. Theor. Appl. Climatol. 122,

249–257. doi: 10.1007/s00704-014-1297-6 . 

in, Z.C., Wang, H.J., 2016. Seasonal prediction of winter haze days in the

north central North China Plain. Atmos. Chem. Phys. 16, 14843–14852.

doi: 10.5194/acp-16-14843-2016 . 

in, Z.C., Wang, H.J., 2017. Statistical prediction of winter haze days in the north china

plain using the generalized additive model. J. Appl. Meteorol. Climatol. 56, 2411–

2419. doi: 10.1175/jamc-d-17-0013.1 . 

in, Z.C., Ma, X.Q. , 2020. Meteorological conditions contributed to changes in dominant

patterns of summer ozone pollution in Eastern China. Environ. Res. Lett. 15, 124062.

doi: 10.1088/1748-9326/abc915 . 

in, Z.C., Zhang, Y.J. , 2020. Climate anomalies contributed to the rebound of PM2.5 in

winter 2018 under intensified regional air pollution preventions. Sci. Total Environ.

726, 138514. doi: 10.1016/j.scitotenv.2020.138514 . 

in, Z.C., Li, Y.Y., Cao, B.F. , 2020a. Seasonal prediction of surface O3-related me-

teorological conditions in summer in North China. Atmos. Res. 246, 105110.

doi: 10.1016/j.atmosres.2020.105110 . 

in, Z.C., Wan, Y., Wang, H.J., 2021a. Decadal changes of connections among snow cover

in West Siberia, Eurasia teleconnection and O3-related meteorology in North China.

Atmos. Chem. Phys. 21, 11519–11530. doi: 10.5194/acp-21-11519-2021 . 

in, Z.C., Wan, Y., Zhang, Y.J., Wang, H.J., 2021b. Why super sandstorm 2021 in North

China. Natl. Sci. Rev, nwab165. doi: 10.5194/acp-21-11519-2021 . 

in, Z.C., Zhou, B.T., Chen, H.P., Li, Y.Y. , 2020b. Synergetic impacts of precursory climate

drivers on interannual-decadal variations in haze pollution in North China: a review.

Sci. Total Environ. 143017. doi: 10.1016/j.scitotenv.2020.143017 . 

in, Z.C., Wang, H.J., Li, Y.Y., Ma, X.H., Zhang, X.Y., 2019. Links of climate variability in

Arctic sea ice, Eurasian teleconnection pattern and summer surface ozone pollution

in North China. Atmos. Chem. Phys. 19, 3857–3871. doi: 10.5194/acp-19-3857-2019 .

hang, L.Y., Lin, J., Qiu, R.Z., Hu, X.S., Zhang, H.H., Chen, Q.Y., Tan, H.M., Lin, D.T.,

Wang, J.K., 2018. Trend analysis and forecast of PM2.5 in Fuzhou, China using the

ARIMA model. Ecol. Indic. 95, 702–710. doi: 10.1016/j.ecolind.2018.08.032 . 

hang, Q., Geng, G.N., 2020. Impact of clean air action on PM2.5 pollution in China. Sci.

China Earth Sci. 62, 1845–1846. doi: 10.1360/SSTe-2020-0005 . 

hang, X.Y., Xu, X.D., Ding, Y.H., Liu, Y.J., Zhang, H.D., Wang, Y.Q., Zhong, J.T.,

2019. The impact of meteorological changes from 2013 to 2017 on PM2.5

mass reduction in key regions in China. Sci. China Earth Sci. 62, 1885–1902.

doi: 10.1360/n072018-00303 . 

hang, Y., Bocquet, M., Mallet, V., Seigneur, C., Baklanov, A., 2012. Real-time air quality

forecasting, part II: State of the science, current research needs, and future prospects.

Atmos. Environ. 60, 656–676. doi: 10.1016/j.atmosenv.2012.02.041 . 

hang, Y., Ma, Z., Gao, Y., Zhang, M. , 2021. Impacts of the meteorological condi-

tion versus emissions reduction on the PM2.5 concentration over Beijing–Tianjin–

Hebei during the COVID-19 lockdown. Atmos. Ocean. Sci. Lett. 14, 100014.

doi: 10.1016/j.aosl.2020.100014 . 

hou, W.J., Wu, X.L., Ding, S., Cheng, Y.K. , 2020. Predictive analysis of the air quality

indicators in the Yangtze River Delta in China: an application of a novel seasonal grey

model. Sci. Total Environ. 748, 141428. doi: 10.1016/j.scitotenv.2020.141428 . 

hu, J., Tang, X., Wang, Z., Wu, L., 2018. A review of air quality data as-

similation methods and their application. Chin. J. Atmos. Sci. 42, 607–620.

doi: 10.3878/j.issn.1006-9895.1802.17260 . 

ou, Y.F., Wang, Y.H., Zhang, Y.Z., Koo, J.-H. , 2017. Arctic sea ice, Eurasia snow, and

extreme winter haze in China. Sci. Adv. 3, e1602751. doi: 10.1126/sciadv.1602751 . 

http://dx.doi.org/10.1016/j.aosl.2021.100131
https://doi.org/10.11867/j.issn.1001-8166.2018.05.0445
https://doi.org/10.1016/j.scitotenv.2020.141823
https://doi.org/10.1016/j.atmosres.2019.04.002
https://doi.org/10.13878/j.cnki.dqkxxb.20200525001
https://doi.org/10.1080/16742834.2016.1176300
https://doi.org/10.1126/sciadv.aav4157
https://doi.org/10.1016/j.scitotenv.2017.11.291
https://doi.org/10.1016/j.envpol.2020.115056
https://doi.org/10.1016/j.envint.2020.105801
https://doi.org/10.1016/j.scitotenv.2018.10.100
https://doi.org/10.1016/j.aosl.2021.100060
https://doi.org/10.1029/\penalty -\@M 2008jd010620
https://doi.org/10.1007/s00382-018-04608-w
https://doi.org/10.5194/essd-13-529-2021
https://doi.org/10.5194/acp-20-11423-2020
https://doi.org/10.1038/s41561-019-0464-x
https://doi.org/10.1073/pnas.2015797118
https://doi.org/10.1016/j.atmosenv.2019.116862
https://doi.org/10.1016/j.chemosphere.2016.11.140
https://doi.org/10.5194/acp-19-8339-2019
https://doi.org/10.4209/aaqr.2020.02.0044
https://doi.org/10.5194/acp-21-16349-2021
https://doi.org/10.1073/pnas.1610708114
https://doi.org/10.1016/j.aosl.2020.100015
https://doi.org/10.3878/AOSL20140081
https://doi.org/10.3878/j.issn.1006-9895.2003.01.13
https://doi.org/10.11676/qxxb2020.022
https://doi.org/10.1016/j.scitotenv.2016.10.081
https://public.wmo.int/en/media/press-release/white-paper-future-of-weather-and-climate-forecasting
https://doi.org/10.1007/s11356-019-04715-z
https://doi.org/10.1007/s00704-014-1297-6
https://doi.org/10.5194/acp-16-14843-2016
https://doi.org/10.1175/jamc-d-17-0013.1
https://doi.org/10.1088/1748-9326/abc915
https://doi.org/10.1016/j.scitotenv.2020.138514
https://doi.org/10.1016/j.atmosres.2020.105110
https://doi.org/10.5194/acp-21-11519-2021
https://doi.org/10.5194/acp-21-11519-2021
https://doi.org/10.1016/j.scitotenv.2020.143017
https://doi.org/10.5194/acp-19-3857-2019
https://doi.org/10.1016/j.ecolind.2018.08.032
https://doi.org/10.1360/SSTe-2020-0005
https://doi.org/10.1360/n072018-00303
https://doi.org/10.1016/j.atmosenv.2012.02.041
https://doi.org/10.1016/j.aosl.2020.100014
https://doi.org/10.1016/j.scitotenv.2020.141428
https://doi.org/10.3878/j.issn.1006-9895.1802.17260
https://doi.org/10.1126/sciadv.1602751

	Seasonal to interannual prediction of air pollution in China: Review and insight
	1 Introduction
	2 Progress
	2.1 Prediction of haze
	2.2 Prediction of surface O3
	2.3 Prediction of dust weather

	3 Insights
	3.1 Changing predictand
	3.2 Predictability
	3.3 Coupled climate model targeted at routine predictions of air pollution

	Funding
	Authors’ contribution
	Declaration of Competing Interest
	Supplementary material
	References


