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A B S T R A C T   

As a heavily polluted country, India has made great efforts on mitigating severe PM2.5 pollution during last 
several years. Quantifying meteorological impacts on PM2.5 pollution and related health burden is essential to 
accurately assess pollution control effects and therefore provides a reference for air quality policy in India. This 
study identifies meteorological influences on PM2.5 trends and related mortality during 2014–2021 in five Indian 
megacities (Chennai, Kolkata, Hyderabad, Mumbai, Delhi). Decreasing trends in PM2.5 concentrations are 
observed in all cities and seasons with the maximum trend of − 7.24 μg m− 3 yr− 1 in Delhi during winter. 
Meteorology causes PM2.5 decreases in all cities and seasons with meteorology-driven downward trends of 
− 6.51 ~ − 0.36 μg m− 3 yr− 1. Meteorology dominates PM2.5 decreases in Delhi during summer/monsoon and 
Chennai/Mumbai/Delhi during winter, where meteorology-driven PM2.5 trends contribute 65% ~ 105% of 
observed PM2.5 decreases. Better ventilation condition is identified as the primary meteorological factor for 
PM2.5 decrease. Anthropogenic emissions almost play positive roles in improving India’s PM2.5 air quality, 
confirming the effectiveness of pollution control measures in India during recent years. Meteorological condi
tions dominate decreases in PM2.5-related deaths in 25% of cities and seasons. The most significant meteorology- 
driven PM2.5-related mortality trend of − 127.12 deaths yr− 1 occurs in Delhi during winter.   

1. Introduction 

As a developing country with rapid urban expansion and population 
growth, India is suffering from severe air pollution and therefore 
becoming a global hotspot for air quality research (Cao et al., 2018; Lu 
et al., 2018; Pal et al., 2018; M. Gao et al., 2019; Guo et al., 2019; 
Hammer et al., 2020; Navinya et al., 2020; Lou et al., 2022; Sharma and 
Mauzerall, 2022; Kumar and Pande, 2023; Sicard et al., 2023). Ac
cording to a study focused on 46 fast-growing tropical cities, the most 
significant trends of +3% yr− 1 ~ +8% yr− 1 in aerosol optical depth were 
observed in Indian cities for 2005–2018 (Vohra et al., 2022). The winter 
PM2.5 concentrations exceeded daily PM2.5 standard (i.e. 60 μg m− 3) set 
by the National Ambient Air Quality Standards (NAAQS) on >90% of 
days for Delhi and Kolkata during 2013–2016 (Sreekanth et al., 2018). 

Exposure to PM2.5 has been associated to adverse health effects such 
as respiratory disease and cardiovascular diseases (Burnett et al., 2018; 
David et al., 2019; Southerland et al., 2022; Maji et al., 2023). South
erland et al. (2022) reported an estimation of 1.8 million deaths 
attributable to long-term exposure to ambient PM2.5 in 13,160 urban 
centers for year 2019. For India, premature deaths associated with long- 
term PM2.5 exposure increased at a rate of 3% yr− 1 during 1998–2015 
(Jia et al., 2021). Vohra et al. (2022) reported an estimation of 54.4 and 
48.3 thousand PM2.5-related premature deaths in 2018 in Kolkata and 
Mumbai, respectively. Short-term PM2.5 exposure can also cause acute 
health outcomes (Li et al., 2019a; Krishna et al., 2021; Joshi et al., 
2022). The daily PM2.5-related premature deaths were reported to be 43 
for Delhi in January 2015–2018 (Chen et al., 2020). Joshi et al. (2021) 
indicated a 0.52% increase in non-trauma all-cause mortality for every 
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10 μg m− 3 increase in 6-days cumulative PM2.5 exposure during 
2013–2017. 

The Indian government has made great efforts on monitoring and 
reducing pollutants to mitigate severe air pollution in last several years 
(Gulia et al., 2022). Since 2015, the National Air Quality Index (AQI) has 
been published to assess air quality in India; a nationwide network of 
ambient air quality monitoring has been built up by the Central Pollu
tion Control Board (CPCB) (CPCB, 2021; Sharma and Mauzerall, 2022). 
Stricter fuel standards have been executed, stipulating that all new ve
hicles must use fuel with sulfur content <10 ppm (in line with Bharat 
Stage VI/Euro VI emission standards) (Maji et al., 2018); electric vehi
cles and clean fuels have also been vigorously popularized and promoted 
(MoEFCC, 2020; Gulia et al., 2022). In 2019, India launched the Na
tional Clean Air Program (NCAP) aiming to reduce particulate matter 
pollution level by 20–30% by 2024 (NCAP, 2019; Ganguly et al., 2020). 
Benefited from air pollution prevention and control policies, PM2.5 
concentrations in India have experienced considerable decreases during 
the recent years (X. Yang et al., 2018; MoEFCC, 2020; Singh et al., 2021; 
Sharma and Mauzerall, 2022). 

Changes in PM2.5 concentrations are not only influenced by 
anthropogenic emissions, but also sensitive to meteorological conditions 
(Chelani, 2013; X. Yang et al., 2018; Dang and Liao, 2019; Zhai et al., 
2019; Yin and Zhang, 2020; J. Li et al., 2021; Bose and Roy Chowdhury, 
2023). Prevailing westerly winds in winter bring pollution from indus
trial regions to the National Capital Territory of Delhi, greatly offsetting 
the positive effect of the “odd-even day” traffic restriction to control 
PM2.5 pollution, which eventually reduce PM2.5 concentrations by only 
2–3% in most areas (Chowdhury et al., 2017). Precipitation leads to 
PM2.5 removal, with a correlation coefficient of − 0.75 between PM2.5 
and precipitation observed during November 2016–October 2017 in 
Delhi (Gorai et al., 2018). Mixing layer height, which largely affects the 
diffusion of air pollutants, is negatively correlated with PM2.5 concen
trations (Guttikunda and Gurjar, 2012). High relative humidity favors 
hygroscopic growth of particles, aggravating PM2.5 pollution (Kumar 
et al., 2015). 

Quantifying meteorological impacts on PM2.5 pollution is essential to 
accurately assess pollution control effects. To develop appropriate 
control strategies, it’s of great importance to build a better under
standing of clear linkages among air quality, meteorological conditions, 
anthropogenic emissions, and health burden (Hidy and Pennell, 2010). 
During the past few years, the spatial-temporal characteristics of PM2.5 
concentrations in Indian cities have been well studied (Sreekanth et al., 
2018; Sarkar et al., 2019; Singh et al., 2021; Barudgar et al., 2022). The 
correlations between PM2.5 and meteorological parameters for India 
have also been reported in more recent studies (Bose and Roy Chowd
hury, 2023; Chandu et al., 2023; Chetna et al., 2023). However, 
recognition and quantification of meteorological influences on PM2.5 
trends and associated health burden in India remain scarce. 

This paper aims to (1) quantitatively assess meteorological in
fluences on PM2.5 trends by constructing multiple regression models in 
conjunction with reanalysis meteorological data; (2) investigate changes 
in PM2.5-related health burden over 2014–2021 and quantify meteoro
logical contribution. The findings of this study hold great significance in 
accurately evaluating the effectiveness of India’s pollution control ac
tions implemented in recent years and therefore provide a scientific 
reference for air quality policy-making in India. 

2. Data and methods 

2.1. Study area 

As shown in Fig. 1, five megacities in India including Delhi, Mumbai, 
Kolkata, Chennai, and Hyderabad, where the U.S. Embassy and Con
sulates in India are located, are chosen for analysis in this study. These 
cities are located in different regions of India, representing the whole 
India to some extent. Delhi (28.60◦N, 77.19◦E), as the capital of India 
and one of the most densely populated city in the world (Sahu and Kota, 
2017), is located in northern India and lies on the Indo-Gangetic Plain 
(IGP), with deserts in the west, hills in the north and east, and plains in 
the south (Guttikunda and Gurjar, 2012; Tiwari et al., 2013; Gorai et al., 

Fig. 1. Map of five Indian megacities coupled with annual mean PM2.5 concentrations and exceedance days from 2014 to 2021. Values in blue represent the 8-year 
average PM2.5 concentrations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2018). Mumbai (19.07◦N, 72.87◦E), located in western India and east 
coast of Arabian Sea, is ranked first for the highest exposed population in 
a vulnerability ranking aimed at estimating PM2.5 air quality in Indian 
cities (Pal et al., 2018). Kolkata (22.55◦N, 88.35◦E), the capital of the 
state of West Bengal, is located in northeastern India and northern side 
of the Bay of Bengal (Dasgupta et al., 2013). Chennai (13.0◦N, 80.25◦E), 
located in southern India and the western coast of Bay of Bengal, is the 
capital of the state of Tamil Nadu and known as “Gateway to South 
India”. Hyderabad (17.44◦N, 78.47◦E), the capital of the state of 
Telangana, is located in the middle of the Deccan Plateau (Singh et al., 
2021; Nandi and Swain, 2022). 

2.2. Data 

2.2.1. PM2.5 concentration 
Hourly PM2.5 concentrations during 2014–2021, measured by Beta 

Attenuation Monitor (BAM-1020) at U.S. Embassy/Consulates in five 
Indian megacities (Sreekanth et al., 2018), are analyzed in this study. 
The record prior to November 2016 can be publicly taken from the 
consulate website (https://in.usembassy.gov/embassy-consulates/ne 
w-delhi/air-quality-data/), while the data after November 2016 are 
available on the AirNow website (https://www.airnow.gov/internation 
al/us-embassies-and-consulates/). 

The reliability of PM2.5 data is challenged by system crashes, pa
rameters exceeding detection limits, and moisture uptake by aerosol 
particles (Kushwaha et al., 2022). Therefore, the data flagged by quality 
control as ‘Missing, Suspect, Invalid’ and negative values are removed 
(Singh et al., 2021). 

The dataset from U.S. Embassy/Consulates covers a long time series 
with good continuity and has been widely used to assess air quality in 
India (Sreekanth et al., 2018; X. Yang et al., 2018; Chen et al., 2020; 
Singh et al., 2021; Barudgar et al., 2022). It has been shown to be in good 
agreement with other measurements (Mahesh et al., 2019; Singh and 
Tyagi, 2021; Sharma and Mauzerall, 2022). Although the CPCB has been 
providing nationwide PM2.5 measurements since 2015, we do not 
choose the CPCB data because of the defect in the continuity and quality 
for the early time (i.e. before year 2018) (Brauer et al., 2019; Chelani, 
2019). Bhardwaj and Pruthi (2019) found that the CPCB PM2.5 mea
surements in Delhi during 2016 were significantly different (14 ± 8 μg 
m− 3) from U.S. Embassy measurements. This study is focused on air 
quality during 2014–2021, and thus uses PM2.5 measurements from U.S. 
Embassy/Consulates with good continuity and high quality over the 
eight years even though it covers only five sites. 

2.2.2. Meteorological data 
Meteorological parameters used in this study are Modern-Era 

Retrospective Analysis for Research and Applications Version 2 
(MERRA-2) reanalysis products with a horizontal resolution of 0.5◦ ×

0.625◦ (lat × lon) from NASA’s Global Modeling and Assimilation Office 
(http://geoschemdata.wustl.edu/ExtData/GEOS_0.5x0.625_A 
S/MERRA2/). 26 meteorological parameters during 2014–2021 are 
selected as meteorological candidates (Table S1) for establishing mul
tiple linear regression (MLR) models. 14 surface-layer meteorological 
variables at one-hour intervals are observed to be correlated with PM2.5 
air quality (Trivedi et al., 2014; Sarkar et al., 2019; Chetna et al., 2023); 
4 upper-layer meteorological variables at three layers (i.e. 1000 hPa, 
850 hPa, 500 hPa) at three-hour intervals can be considered as general 
indicators of atmospheric stability and large-scale circulation (M. Gao 
et al., 2019; Yin and Zhang, 2020; J. Li et al., 2021). It is noted that the 
above-mentioned 26 meteorological candidates are traditional param
eters for establishing MLR models to describe air quality-meteorology 
relationships (Li et al., 2019b; Zhai et al., 2019). 

2.2.3. Health-related data 
The baseline mortality rate (BMR) data for all ages and both genders 

are taken from the Global Burden of Disease (GBD) study results tool, 

which provides an updated estimation of global epidemiological data. 
We obtain India’s BMR data at https://vizhub.healthdata.org/gbd-result 
s/. The official population (Pop) data are obtained from the Registrar 
General & Census Commissioner of India at https://censusindia.gov. 
in/census.website/. 

2.3. Methods 

2.3.1. Establishing multiple linear regression model 
Multiple linear regression (MLR) builds a linear function between a 

response variable and a group of explanatory variables, and thus has 
been widely used to describe air quality-meteorology relationships 
(Upadhyay et al., 2018; Bose and Roy Chowdhury, 2023) and further 
isolate meteorological impacts on air pollutants (Y. Yang et al., 2016; Li 
et al., 2019b; Zhai et al., 2019; Qin et al., 2021). In this study, we 
establish MLR models between PM2.5 concentration and meteorological 
parameters during 2014–2021 for each city and each season. MLR model 
is shown as follows: 

Cs,r(t) = b0,s,r +Σk
i=1bi,s,r ×Meti(t)+ ε (1)  

where Cs,r(t) is daily PM2.5 concentration for season s and city r, Meti(t)
is i-th meteorological variable with a total number of k and bi,s,r is cor
responding regression coefficient, b0,s,r is the intercept term, and ε is the 
residual term. 

To obtain optimal fitting, we go through a suit of screening processes 
as follows: 

Firstly, we calculate the correlation coefficients between PM2.5 
concentrations and initial 26 meteorological candidates. Those meteo
rological parameters that are not statistically significant at the 95% 
confidence level are removed, and the remainders move to next 
screening stage. 

Secondly, we calculate variance inflation factor (VIF) to measure 
collinearity between meteorological parameters (Altland, 1999; L. Gao 
et al., 2021) as follows: 

VIF = 1
/(

1 − R2
j

)
(2)  

where R2
j is the regression coefficient of determination between the j-th 

variable and other variables. To minimize multi-collinearity influences, 
we set the upper limit of 10 for VIF following Kutner et al. (2004). Those 
meteorological parameters with VIF>10 are abandoned and the 
remaining candidates go on to next screening stage. 

Thirdly, stepwise regression is conducted by adding or abandoning 
candidates. When Akaike Information Criterion (AIC) statistic (Akaike, 
1969) reaches the minimum, the optimal fitting occurs. AIC takes the 
following form: 

AIC = N× ln(SSE/N)+2×(k+ 1) (3)  

where SSE is the sum of squared errors Σ(C(t) − P(t) )2, in which C(t) and 
P(t) are the observed PM2.5 concentration and MLR-fitted PM2.5 con
centration, respectively; N and k are the total number of PM2.5 mea
surements and meteorological parameters used for MLR construction, 
respectively. After conducting the above three screening steps, we 
obtain the optimal fittings. 

2.3.2. Quantifying meteorology-driven PM2.5 trend 
Based on the established PM2.5-meteorology relationships, we 

calculate the meteorology-driven PM2.5 trend for each season s and each 
city r (TCs,r) as: 

TCs,r = Σk
i=1bi,s,r ×TMeti (4)  

where TMeti is the trend of i-th meteorological variable used for MLR 
construction. The PM2.5 trend attributed to other factor, mainly refer
ring to the effect of anthropogenic emissions, is the difference between 
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observed PM2.5 trend and TCs,r. The trends of PM2.5 and meteorological 
variables are derived using Least Square Method (LSM). We also use 
Mann-Kendall and Theil-Sen (MK-TS) method for trend estimation to 
test the uncertainty brought by the method, which is displayed in Sec
tion 4 and Table 2. 

The percentage contribution of each meteorological variable 
(Conti,s,r) on meteorology-driven PM2.5 trend is calculated as: 

Conti,s,r =
(
bi,s,r ×TMeti

)/
TCs,r (5)  

when it reaches the maximum, the corresponding meteorological vari
able (with statistically significant trend) is identified as the dominant 
meteorological factor for PM2.5 trend. 

2.3.3. Assessing PM2.5-related health impacts 
This study focuses on changes in PM2.5 and related health burden for 

four seasons, therefore health impact assessment in this study pays 
attention to premature mortality attributable to short-term PM2.5 
exposure. Four seasons include winter (December–January-February), 
summer (March–April-May), monsoon (June–July-August), and post- 
monsoon (September–October-November), which is a common way to 
divide seasons for India (Singh et al., 2021; Chandu et al., 2023). The 
daily premature all-cause mortality (PreMort) can be assessed as: 

PreMort = BMR×Pop×(RR − 1)/RR (6)  

where daily BMR data are converted from annual rates taken from 
GBD2019 for all ages and both genders. Details of BMR and Pop sources 
are show in Sections 2.2.3. RR is daily relative risk and estimated by a 
linear exposure-response function (van Donkelaar et al., 2011) as 
follows: 

RR = 1+ [γ ×(C − C0)×0.1 ] (7)  

where the summary risk estimate (γ) from Atkinson et al. (2014) is 
calculated through a systematic review and meta-analysis of epidemio
logical studies, taking the value of 1.04% (0.52%–1.56%, 95% confi
dence interval) corresponding to per 10 μg m− 3 change in daily mean 
PM2.5 concentrations (C); the threshold concentration (C0) is 0 μg m− 3 

(Li et al., 2019a; Yuan et al., 2019; Chen et al., 2020; Jat and Gurjar, 
2021). Uncertainties involved in this methodology are discussed in 
Section 4. 

2.3.4. Conducting sensitivity experiments 
According to the health impact assessment (Eq. (6)), the variations in 

PM2.5-related premature deaths are influenced by BMR, Pop, and con
centration (Conc). The Conc variations are further affected by meteo
rological conditions (Met) and anthropogenic emissions (Emis). We 
conduct a set of sensitivity experiments, as shown in Table 1, to quantify 
respective contribution of each factor to variations in PM2.5-related 
mortality during 2014–2021. 

Experiment “Exp_CTL” represents that all factors are changed over 
2014–2021; “Exp_Conc”/“Exp_Pop”/“Exp_BMR” represents that only 
Conc/Pop/BMR varies from 2014 to 2021 in order to examine mortality 
variations due to respective variation alone; “Exp_Met” is designed to 
assess meteorological influences, core objective of this study, and uses 
PM2.5 concentrations predicted by MLR model and meteorological var
iables; “Exp_Emis” is the difference between “Exp_Conc” and “Exp_Met”, 
aiming to examine mortality variations owing to Emis variation alone. 

3. Results 

3.1. Meteorology-driven trends of PM2.5 air quality 

Fig. 1 presents yearly variations in annual mean PM2.5 concentra
tions for five Indian megacities, including Delhi, Mumbai, Kolkata, 
Chennai, and Hyderabad. The PM2.5 pollution has been mitigated to 

varying degrees during the past eight years, with the most significant 
trend of − 4.44 μg m− 3 yr− 1 in Delhi. It is noted that the lowest PM2.5 
level in 2020 reflects the impact of COVID-19 lockdown. As shown in 
Fig. 1, the most notable feature of PM2.5 pollution in India is spatially 
heterogeneous, with the north more serious than the south which agrees 
with X. Yang et al. (2018) and Sharma and Mauzerall (2022). Delhi faces 
high industrial load from power plants in the west and north (Sreekanth 
et al., 2018; Barudgar et al., 2022) and has a large population with 
densities 3 to 20 times higher than surrounding cities, causing the 
severest PM2.5 pollution (Kumar et al., 2015; Chowdhury et al., 2017; M. 
Gao et al., 2018). We also show PM2.5 exceedance days with daily PM2.5 
concentration exceeding 60 μg m− 3 (i.e. Indian NAAQS for daily PM2.5 
level). The highest (lowest) exceedance days are observed in Delhi 
(Chennai), with an average of 218 (36) exceedance days in a year and 
statistically significant decreasing trends of − 9.32 days yr− 1 (− 3.49 
days yr− 1) at the 90% confidence level. 

Seasonal and monthly variations in PM2.5 concentrations during 
2014–2021 in India are shown in Fig.S1 and Fig.S2. Among the four 
seasons, the PM2.5 concentrations exhibit the maximum values in winter 
and the minimum values in monsoon, which is consistent with previous 
studies (Sahu et al., 2020; Singh et al., 2021). For monthly variation, the 
PM2.5 peak and valley mainly occur around December and July every 
year. The eight-year average PM2.5 concentration in Delhi during winter 
is 190 μg m− 3 (4.7 times the Indian annual limit of 40 μg m− 3 set by 
NAAQS), while the PM2.5 concentration during monsoon is 46 μg m− 3. 
Meteorological variations mainly account for the seasonal variations in 
PM2.5 concentrations. During winter, meteorological conditions (e.g. 
low boundary layer height) inhibit the diffusion of PM2.5 (X. Yang et al., 
2018; Ojha et al., 2020). In monsoon, however, below-cloud scavenging 
associated with monsoon is conducive to PM2.5 removal (Sreekanth 
et al., 2018; Sharma and Mauzerall, 2022). 

MLR models are established for each city and season to further 
quantify meteorological contributions to the trends of PM2.5 concen
trations. Fig. 2 shows variations in observed, meteorology-driven, and 
emission-driven PM2.5 concentrations in five cities and four seasons 
during 2014–2021. The observed PM2.5 concentrations show downward 
trends in all 20 cities and seasons. In summer and monsoon, the 
decreasing trends of observed PM2.5 concentrations range from − 4.98 
μg m− 3 yr− 1 to − 1.26 μg m− 3 yr− 1 in five cities, almost statistically 
significant at the 90% confidence level except for Mumbai during 
monsoon (Fig. 2(d2)); in post-monsoon, the PM2.5 concentrations in 

Table 1 
Sensitivity experiments for examining PM2.5-related mortality variations owing 
to the variations in each driving factor during 2014–2021.  

Driver Conc Pop BMR Purpose 

Experiment 

Exp_CTLa 2014–2021a 2014–2021 2014–2021 Normal condition 
Exp_Conca 2014–2021a Fixed at 

2014 
Fixed at 
2014 

Examine mortality 
variation owing to 
Conc variation alone 

Exp_Metb 2014–2021b Fixed at 
2014 

Fixed at 
2014 

Examine mortality 
variation owing to 
Met variation alone 

Exp_Pop Fixed at 
2014 

2014–2021 Fixed at 
2014 

Examine mortality 
variation owing to 
Pop variation alone 

Exp_BMR Fixed at 
2014 

Fixed at 
2014 

2014–2021 Examine mortality 
variation owing to 
BMR variation alone 

Exp_Emis The difference between Exp_Conc and 
Exp_Met 

Examine mortality 
variations owing to 
Emis variation alone  

a The observed PM2.5 concentrations vary from 2014 to 2021 in Exp_CTL and 
Exp_Conc experiments. 

b The MLR-predicted PM2.5 concentration vary from 2014 to 2021 in Exp_Met 
experiment. 
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Chennai and Hyderabad exhibit statistically significant decreasing 
trends of − 2.40 μg m− 3 yr− 1 and -2.74 μg m− 3 yr− 1 (Fig. 2(a3) and Fig. 2 
(c3)); in winter, statistically significant PM2.5 decreases with trends of 
− 1.45 μg m− 3 yr− 1 and -7.24 μg m− 3 yr− 1 are shown in Chennai and 
Delhi (Fig. 2(a4) and Fig. 2(e4)). Among all seasonal trends, the 
maximum decreasing trend of − 7.24 μg m− 3 yr− 1 appears in Delhi 
during winter (Fig. 2(e4)). 

Anthropogenic emissions almost play positive roles in improving 

India’s PM2.5 air quality, confirming the effectiveness of pollution con
trol measures in India during recent years. During summer and 
monsoon, the emission-driven PM2.5 trends are negative in all cities with 
trends ranging from − 3.40 μg m− 3 yr− 1 to − 0.88 μg m− 3 yr− 1, three- 
fifths of which are statistically significant. The maximum emission- 
driven increasing trend of +4.84 μg m− 3 yr− 1 appears in Delhi during 
post-monsoon, mainly contributed by straw burning over the northwest 
IGP (T. Liu et al., 2018; Ojha et al., 2020; Chetna et al., 2023). 

Fig. 2. Variations in observed PM2.5 concentrations (Obs_PM2.5, shown in black solid lines), meteorology-driven PM2.5 concentrations (Met_PM2.5, shown in blue 
solid lines), and emission-driven PM2.5 concentrations (Emis_PM2.5, shown in red solid lines) during 2014–2021. The calculated 8-year trends (unit: μg m− 3 yr− 1) are 
shown in dotted lines and values with corresponding colors. Values with an asterisk (*) mean statistically significant trends at the 90% confidence level. The 
percentage contributions of Met_PM2.5 and Emis_PM2.5 to Obs_PM2.5 are also shown in corresponding colors. Note that Emis_PM2.5 is the difference between 
Obs_PM2.5 and Met_PM2.5, and thus it has negative values; however it doesn’t matter because the trend, rather than the concentration itself, is the focus. Note that the 
data gap in (a3) indicates missing observations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Meteorology causes PM2.5 decreases in all 20 cities and seasons with 
meteorology-driven downward trends of − 6.51 ~ − 0.36 μg m− 3 yr− 1. 
Here meteorology-driven PM2.5 trends that are larger than correspond
ing emission-driven trends and meanwhile statistically significant are 
defined as meteorology-dominated PM2.5 trends. Meteorological con
ditions dominate PM2.5 decreases in Delhi during summer/monsoon 
(Fig. 2(e1) and Fig. 2(e2)) and Chennai/Mumbai/Delhi during winter 
(Fig. 2(a4), Fig. 2(d4), and Fig. 2(e4)). The meteorology-driven PM2.5 
trends are − 2.35 μg m− 3 yr− 1, − 3.22 μg m− 3 yr− 1, and − 6.51 μg m− 3 

yr− 1, contributing 67%, 65%, and 90% of observed PM2.5 decreases for 
Delhi during summer, monsoon, and winter, respectively. For Chennai 
and Mumbai during winter, anthropogenic emissions lead to PM2.5 in
creases and therefore meteorology-driven PM2.5 trends (− 1.45 μg m− 3 

yr− 1 and -2.43 μg m− 3 yr− 1) contribute >100% (101% and 105%) of 
observed PM2.5 decreases. The meteorology-driven and emission-driven 
contributions vary in different cities or seasons for reasons such as dif
ferences in climatology, topography, and air quality policies. For 
example, meteorology dominates PM2.5 trends in aforementioned five 
cities and seasons, which can be mainly attributed to better ventilation 
conditions (Fig. 3); In Chennai/Hyderabad/Mumbai during winter, the 
emission even causes PM2.5 increases, resulting from the lack of strict 
regulations on traffic emissions and household emissions in winter (Wu 
et al., 2019; Singh et al., 2021). 

We further identify the leading meteorological parameters respon
sible for PM2.5 decreases in above five meteorology-dominated cities/ 
seasons. In Delhi during summer/monsoon (Fig. 3a and Fig. 3b), the 
dominant meteorological factor is vertical pressure velocity at 1000 hPa 
(W1000). The weakening of the downdraft with the trend of − 0.001 Pa 
s− 1 yr− 1 (summer) and − 0.002 Pa s− 1 yr− 1 (monsoon) provides better 
ventilation condition and favors the upward transport of PM2.5, thereby 
alleviating PM2.5 pollution at surface layer (J. Li et al., 2021; Sharma 
and Mauzerall, 2022). In Chennai during winter (Fig. 3c), 2-m specific 
humidity (QV2M), regarded as the dominant meteorological factor, 
exhibits an increasing trend of +0.12 g kg− 1 yr− 1. In addition, an up
ward trend of +0.07 mm day− 1 yr− 1 in total precipitation (PRECTOT), 
identified as the second dominant meteorological factor, is also observed 
during the same time period (it is not shown in the figure). The QV2M 
and PRECTOT have been reported to be positively correlated with the 
removal efficiency of aerosol particles (Sarkar et al., 2019; Bose and Roy 
Chowdhury, 2023; Chetna et al., 2023). Therefore, the increasing QV2M 
and PRECTOT can lower PM2.5 concentrations through enhancing 

aerosol wet scavenging. In Mumbai during winter (Fig. 3d), 10-m 
meridional wind (V10M) is the primary meteorological factor. It 
shows a trend of − 0.06 m s− 1 yr− 1, which means stronger north wind, 
provides better ventilation condition and lowers PM2.5 levels (Barudgar 
et al., 2022). In Delhi during winter (Fig. 3e), 10-m wind speed (WS10), 
with an upward trend of +0.05 m s− 1 yr− 1, is identified as the dominant 
meteorological factor, which also indicates better ventilation condition 
and favors the dispersion of PM2.5 (Gorai et al., 2018; Ojha et al., 2020; 
Chandu et al., 2023). In general, better ventilation condition is identi
fied as the primary meteorological factor for PM2.5 decrease. 

3.2. Variations in PM2.5-related health burden and meteorological 
impacts 

India’s air pollution has posed a great threat to public health. In 
2019, the urban PM2.5-attributable mortality rate in India is 1.2 times 
higher than the global rate (Southerland et al., 2022). We estimate 
premature deaths attributable to short-term PM2.5 exposure in five cities 
for all seasons. As shown in Fig. 4, among all cities, Delhi faces the 
greatest PM2.5-related health burden owing to severe PM2.5 pollution 
and high population density, with an eight-year average of 4768 
(2605–6596, 95% confidence interval) deaths for a whole winter. In 
China, 46.0 thousand premature deaths in 2019 caused by short-term 
PM2.5 exposure were reported by J. Liu et al. (2021), indicating that 
the short-term PM2.5-related health burden in developing countries such 
as India and China cannot be neglected (Li et al., 2019a). 

The lowest PM2.5-related health burden appears in Chennai due to 
the lowest PM2.5 levels, though its population is larger than Kolkata and 
Hyderabad. The eight-year average premature mortality in Chennai is 
estimated to be 184 (93–273, 95% confidence interval) deaths for a 
whole summer, approximately half of that in Kolkata and Hyderabad. 
Our estimate for Delhi in January 2016 (69 (39–94, 95% confidence 
interval) deaths for each day) is slightly higher than that in Jat and 
Gurjar (2021) who reported a daily premature death of 61 (33–91, 95% 
confidence interval), owing to the discrepancies in BMR values and 
population size from various databases. From 2014 to 2021, the PM2.5- 
related deaths exhibit decreases in five cities during summer, monsoon, 
post-monsoon, and Delhi during winter. The maximum decreasing trend 
(statistically significant) occurs in Delhi during summer (Fig. 4(e1)) and 
is calculated to be − 84.37 deaths yr− 1. 

As mentioned in Section 2.3.4, the variations in PM2.5-related deaths 

Fig. 3. The dominant meteorological factors responsible for meteorology-dominated PM2.5 decreases during 2014–2021. The calculated 8-year trends are shown in 
dotted lines and values, all statistically significant at the 90% confidence level. 
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are influenced by BMR, Pop, Met, and Emis. Bars in Fig. 4 show the 
trends in PM2.5-related deaths owing to the variation in each factor 
during 2014–2021. The “Exp_CTL” experiment shows that the decreases 
in PM2.5-related deaths are observed for most cities and seasons during 
2014–2021. Emission reduction exerts positive impacts on alleviating 
PM2.5-related health burden in almost all cities and seasons except for 
Delhi during post-monsoon and Hyderabad/Mumbai during winter, 
with the largest emission-driven decreasing trend of − 66.32 deaths yr− 1 

in Mumbai during summer. Despite of advances in medical care, BMR 
decrease has very limited effects with BMR-driven trends of less than 
− 2.35 deaths yr− 1. Population growth exerts negative impacts on 
mitigating PM2.5-related health burden; for some cities and seasons, e.g., 
Delhi during summer and winter (Fig. 4(e1) and Fig. 4(e4)), the adverse 
effect of population growth almost offsets the efforts of emission 
reduction and medical improvement. 

Meteorological conditions are favorable for reducing PM2.5-related 
deaths in 85% of cities and seasons. For Delhi during summer/monsoon/ 
winter (Fig. 4(e1), Fig. 4(e2), and Fig. 4(e4)) and Kolkata/Mumbai 
during post-monsoon (Fig. 4(b3) and Fig. 4(d3)), impacts of meteoro
logical conditions on PM2.5-related mortality decreases (statistically 
significant) are greater than those of other factors. The largest 

meteorology-driven mortality decrease (statistically significant) occurs 
in Delhi during winter (Fig. 4(e4)); the meteorology-driven decreasing 
trend of − 127.12 deaths yr− 1 even exceeds observed trend of − 94.87 
deaths yr− 1. 

4. Limitations and uncertainties 

There are some aspects in present study that need to be improved in 
future studies. Besides U.S. Embassy/Consulate data used in this study, a 
nationwide network of ambient air quality monitoring built by the CPCB 
has provided PM2.5 measurements since 2015, covering >300 cities/ 
towns of India until 2021. However, the comparison between the two 
databases shows that the CPCB PM2.5 measurements are defective in the 
continuity and quality for the early time, which was also supported by 
Gorai et al. (2018). Therefore, we choose the PM2.5 concentrations 
observed by U.S. Embassy/Consulate with good continuity and quality 
during 2014–2021 even though it covers only five sites. Future studies 
are expected to take full advantage of the CPCB database to examine 
India’s air quality, as the weakness has been overcome gradually since 
2018. 

Uncertainty may come from trend estimation (Chervenkov and 

Fig. 4. Premature deaths (brown lines, right axis, unit: deaths) attributable to short-term PM2.5 exposure during 2014–2021 and trends in premature deaths (colored 
bars and values, left axis, unit: deaths yr− 1) under five sensitivity experiments conducted in Table 1. Values with an asterisk (*) mean statistically significant trends at 
the 90% confidence level. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

X. Wang et al.                                                                                                                                                                                                                                   



Atmospheric Research 308 (2024) 107548

8

Slavov, 2019). We compare PM2.5 trends with two methods (LSM and 
MK-TS) to test the uncertainty brought by trend-estimation method. As 
shown in Table 2, high consistency appears in statistically significant 
trends while large discrepancy only occurs in statistically insignificant 
trends. Therefore, subsequent analysis for identification of dominant 
meteorological factor is conducted in the cities and seasons with sta
tistically significant meteorology-driven PM2.5 trends. 

Besides traditional statistical methods (e.g., multiple linear regres
sion and Kolmogorov–Zurbenko filter), machine learning methods (e.g., 
random forest and extreme gradient boosting) and chemistry transport 
models (e.g., GEOS-Chem model and CMAQ model) can also be used to 
obtain the effects of emissions and meteorology on PM2.5 concentra
tions. Although a recent study revealed that PM2.5 trends showed 
insignificant differences for both the emission-related and meteorology- 
related components between these approaches (Zheng et al., 2023), it is 
recommended to use more models to obtain more accurate assessment in 
future studies. 

Uncertainty also comes from the estimation of PM2.5-related health 
burden. The summary risk estimate (γ) used in this study is mostly based 
on studies conducted in Europe and the United States (Atkinson et al., 
2014; Crippa et al., 2016), where PM2.5 levels are lower than those 
observed in India, giving rise to an uncertainty for health burden esti
mation. Future studies are expected to use local γ for India to estimate 
PM2.5-related health burden. In addition to the linear exposure-response 
function used in this study, a logarithmic exposure-response function is 
also encouraged to provide additional estimate in future studies. 

5. Conclusions 

This study presents a seasonal analysis of the meteorological 

influences on PM2.5 trends and related health burden in five Indian 
megacities during 2014–2021. From 2014 to 2021, PM2.5 concentrations 
exhibit downward trends in all cities and seasons, ranging from − 7.24 
μg m− 3 yr− 1 to − 0.29 μg m− 3 yr− 1. Meteorology-driven PM2.5 downward 
trends are in the range of − 6.51 ~ − 0.36 μg m− 3 yr− 1. Variations in 
meteorological conditions dominate PM2.5 decreases in Delhi during 
summer/monsoon and Chennai/Mumbai/Delhi during winter; the 
meteorology-driven PM2.5 trends contribute 65% ~ 105% of observed 
PM2.5 decreases. Better ventilation condition, identified as the primary 
meteorological factor, facilitates PM2.5 decrease. The premature deaths 
caused by short-term exposure to PM2.5 pollution are further estimated. 
From 2014 to 2021, meteorological conditions are favorable for 
reducing PM2.5-related deaths in 85% of cities and seasons, and domi
nate decreases in PM2.5-related deaths in 25% of cities and seasons. In 
Delhi during winter, the meteorology-driven decreasing trend of 
− 127.12 deaths yr− 1 even exceeds observed trend of − 94.87 deaths 
yr− 1. 

The PM2.5 air quality and related health burden in India have been 
improved and alleviated a lot since 2014. Anthropogenic emissions exert 
positive effects on air quality, confirming the effectiveness of pollution 
control measures implemented in India in recent years. However, 
meteorological influences can’t also be neglected. Our study creatively 
provides an estimation of meteorology-driven PM2.5 trends and related 
health burden, and shows that meteorology causes PM2.5 decreases in all 
cities and seasons. We also find, quite interestingly, Delhi in winter 
suffers from the severest PM2.5 pollution, along with the maximum 
meteorology-driven PM2.5 downward trend. Future chemical transport 
models are expected to provide clearer explanation for the considerable 
meteorological impact in Delhi during winter. 

Table 2 
Trends calculated with Least Square Method (LSM) and Mann-Kendall and Theil-Sen (MK-TS) method in five 
cities and four seasons. 

Values in bold fonts are statistically significant at the 90% confidence level. Values in red fonts represent 
trends with large discrepancies calculated by two methods. 
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