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A B S T R A C T   

Projecting future air pollution and related health burdens remains challenging because of the complex in
teractions among future emissions, population, and climate change. In this study, we estimated the premature 
deaths attributed to ambient fine particulate matter (PM2.5) and ozone (O3) from 2015 to 2100 under four so
cioeconomic climate scenarios based on an age-stratified assessment method. We found that PM2.5 will decrease 
in all shared socioeconomic pathway (SSP) scenarios and O3 will decrease in the SSP1-2.6 and SSP2-4.5 sce
narios, contributing to a decrease in premature mortality together with the declining total population in China. 
However, the benefits of a decline in population size and PM2.5 and O3 concentrations over time will be largely 
offset by population aging, and premature death caused by PM2.5 and O3 will continue to rise till 2060–2080. 
This impact was greater for the O3-related deaths than those for PM2.5. Our study highlights the importance of 
future prevention strategies that must jointly improve air quality and susceptibility to aging.   

1. Introduction 

Ambient fine particulate matters (PM2.5) and ozone (O3) are harmful 
to human health and cause premature mortality from respiratory and 
cardiovascular diseases, and lung cancer (Hu et al., 2017; Wang et al., 
2021a; Wang et al., 2021b). In China, the rapid economic development 
and intensive energy consumption have caused severe environmental 
pollution and health burdens. In 2015, PM2.5 and O3 exposure resulted 
in 4.2 million and 0.25 million premature deaths worldwide, respec
tively, among which 32–39 % occurred in China (Cohen et al., 2017; Li 
et al., 2018; Lin et al., 2018). The high burden of diseases caused by 
increased air pollution has always been an urgent issue that scientists 
and the government have committed to solving. 

Changes in air pollution are influenced by various factors, including 

emissions, climate change, and socioeconomic factors. Affected by 
climate change, nitrogen oxide (NOx) and non-methane volatile organic 
compounds (NMVOCs) from biogenic emissions increase, contributing 
to the increasing effects on O3 and PM2.5, precursors concentrations 
(Nguyen et al., 2019). The study reported that every 10,000-t increase in 
CO2 emissions reduction, PM2.5 emissions reduction will increase by 3.3 
t (Nguyen et al., 2019). Primary air pollutants reduction, such as NOx, 
VOCs can also impact ozone concentration. The Intergovernmental 
Panel on Climate Change (IPCC) report adopts a series of carbon dioxide 
(CO2) emission scenarios (i.e., representative concentration pathways 
(RCPs)), to develop various climate scenarios using simulations (Moss 
et al., 2010). RCPs are a series of comprehensive enrichment and 
emission scenarios that are used as input parameters for prediction 
models of climate change under the influence of human activities in the 

* Corresponding authors at: Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information 
Science & Technology, Nanjing, China (Jianlin Hu). Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, 
University at Buffalo, Buffalo, NY, USA (Meng Wang). 

E-mail addresses: jianlinhu@nuist.edu.cn (J. Hu), mwang54@buffalo.edu (M. Wang).  

Contents lists available at ScienceDirect 

Environment International 

journal homepage: www.elsevier.com/locate/envint 

https://doi.org/10.1016/j.envint.2022.107542 
Received 8 June 2022; Received in revised form 18 September 2022; Accepted 23 September 2022   

mailto:jianlinhu@nuist.edu.cn
mailto:mwang54@buffalo.edu
www.sciencedirect.com/science/journal/01604120
https://www.elsevier.com/locate/envint
https://doi.org/10.1016/j.envint.2022.107542
https://doi.org/10.1016/j.envint.2022.107542
https://doi.org/10.1016/j.envint.2022.107542
http://creativecommons.org/licenses/by/4.0/


Environment International 169 (2022) 107542

2

21st century to describe future changes in population, socioeconomics, 
science and technology, energy consumption and land use., emissions of 
reactive gases, aerosols, and concentrations of atmospheric constituents 
(Meinshausen et al., 2020). Experiments performed as part of the 
coupled model intercomparison project (CMIP) and the aerosol chem
istry model intercomparison project (ACMIP) have contributed signifi
cantly to the multimode evaluation of historical and future changes in 
air pollutants and projected future disease burdens (Shim et al., 2021). 
The sixth phase of the CMIP (CMIP6) scenario replaced the traditional 
four RCPs in the CMIP5 model with new emission scenarios driven by 
different socioeconomic climates. The shared socioeconomic pathways 
(SSPs) incorporate scientific combination scenarios of various SSPs: 
SSP1 (sustainability), SSP2 (middle of the road), SSP3 (regional rivalry), 
and SSP5 (conventional development)), and captured socioeconomic 
changes in population, urban density, education, land use, and wealth 
(IPCC 2021). The CMIP6 model integrates multiple scenarios and eco
nomic factors, enhances the robustness of climate projections, and 
provides better support for climate policy (Yao et al., 2021). However, 
current research is widely based on projections from the CMIP5 model 
(Chen et al., 2018; Chowdhury et al., 2018; Yan et al., 2022). Owing to 
the unique climate and economic environment in China, using the latest 
climate scenarios to assess health risks will help policymakers more 
accurately understand the future risk of death from air pollution. 

Many studies on the health impacts of PM2.5 and O3 in the future only 
consider changes in concentration and population size and not popula
tion aging in the scenarios (Chowdhury et al., 2018; Wang et al., 2021a). 
Older populations are particularly vulnerable to air pollution because of 
their higher likelihood of chronic diseases and the decline in physio
logical protection mechanisms (Di et al., 2017; Shumake et al., 2013). 
Therefore, population aging may exacerbate health effects under 
changing climate conditions, especially in China, where the age struc
ture of the population tends to be aging (Mao et al., 2020). No study has 
evaluated the health burden by considering the interaction of the three 
aforementioned drivers using the latest CMIP6 models. 

To fill these research gaps, this study estimated PM2.5- and O3-related 
premature death changes from 2015 to 2100 under different SSP sce
narios in China. We used air pollution data from the newly developed 
CMIP6 models and assessed the contribution of three key driv
ers–climate and emission changes, population size, and population age 
structure–to the change in the number of pollutant-related deaths. Our 
study provides a reference for China and other developing countries to 
formulate long-term clean air policies under different climate change 
conditions. 

2. Materials and methods 

2.1. PM2.5 and O3 data 

We obtained annual average PM2.5, and annual average daily 
maximum 8 h mean O3 concentrations from the CMIP6 models in China 
every-five years from 2015 to 2100 and set 2015 as the base year under 
various socioeconomic climate scenarios. Four scenarios of a CMIP6 
model were used to project the annual average concentration of PM2.5, 
and 12 CMIP6 models were used to project the annual average of daily 
maximum 8 h mean O3 concentrations. Details of the individual models 
are listed in Table S1. The simulation domain was nested over Asia 
(11◦S–55◦N, 70◦–150◦E), and the resolution of each model was statis
tically downscaled to 1◦×1◦. 

The PM2.5 and O3 exposures were estimated in the SSP1-2.6, 2–4.5, 
3–7.0, and 5–8.5 scenarios of CMIP6 models. For scenarios SSP1-2.6 and 
SSP5-8.5, we assume that the human development trend is relatively 
optimistic, large sums of money have been invested in education and 
health, the economy is overgrowing, and organization is functioning 
well. The difference is that SSP1-2.6 is increasingly turning into sus
tainable development-related measures, and CO2 emissions will 
generate a forcing level of 2.6 Wm− 2 in 2100. Scenario SSP5-8.5 is 

assumed to be driven by an energy-intensive, fossil-fuel-based economy, 
and CO2 emissions will cause a forcing level of 8.5 Wm− 2 in 2100 
(O’Neill et al., 2016). The SSP2-4.5 scenario represents a “middle way” 
scenario, which will continue the historical development pattern 
throughout the 21st century. The CO2 emissions will generate a forcing 
level of 4.5 Wm− 2 in 2100. The SSP3-7.0 scenario assumes a more 
pessimistic outlook on future socioeconomic development. With rapid 
population growth and increasing inequality, emerging countries have 
little investment in education and health. The CO2 emissions will 
generate a forcing level of 7.0 Wm− 2 in 2100 (Riahi et al., 2017). 

Population-weighted concentrations (PWE) were used to estimate 

mean PM2.5 and O3 exposure. PWE =

∑
Ci*popi∑

popi
, where Ci is the annual 

average PM2.5 or O3 concentration in grid i. popiisthepopulation of grid i. 

2.2. Population data 

Population trends in China were estimated by age groups every-five 
years from 2015 to 2100 under the five SSPs from the SSP Public 
Database Version 2.0 (https://tntcat.iiasa.ac.at/SspDb/dsd?Action =
htmlpage&page = 30). This trend was subsequently incorporated into 
the population grid cells (1 km resolution) of the 2010 population census 
data obtained from the LandScan database of the Oak Ridge National 
Laboratory (https://landscan.ornl.gov/downloads/2008) to fit the 
CMIP6 model output. 

2.3. Health burden assessment 

Different age groups have different levels of immunity and suscep
tibility to air pollution (Wang et al., 2018). According to the studied 
population characteristics, we decided to assess air pollution-related 
deaths by specific age groups for PM2.5 (25–65 and 65 + years-old) 
and for O3 (30–50, 50–65, and 65 + years-old). The death toll was the 
sum of the number of deaths in a specific age group. 

Cause-specific deaths, including chronic obstructive pulmonary dis
ease (COPD; J40-J47), ischemic heart disease (IHD); I20-I25), stroke 
(I60-I69), and lung cancer (LC; C34), were obtained from the 10th 
revised International Classification of Disease Statistics (ICD-10) and 
summed up for assessing the premature deaths caused by PM2.5 (Linares 
et al., 2018). Respiratory disease (J00-J99) deaths were used to estimate 
premature deaths caused by O3 (U.S. Environmental Protection Agency, 
2020). As shown in Eq (1), the premature deaths of PM2.5 and O3 
associated with different disease categories were estimated every-five 
years, from 2015 to 2100. 

ΔMort =
∑n

i=1
popi,m,n,s*yj,m*

[
RRi,j,m,n,s − 1
RRi,j,m,n,s

]

(1)  

where ΔMort is the premature mortality caused by PM2.5 or O3; popi,m,n,s 
is the population of a specific age group m for grid i in years n under 
scenario s; yj,m is the baseline mortality with disease category j of specific 
age groups m obtained from the China Health Statistics Yearbook 
(Ministry of Health, 2011) (Table S2). RRi,j,m,n,s is the relative risk for 
disease category j of a specific age group m at a grid i in years n under 
scenario s caused by PM2.5 or O3, and (RR-1)/RR is the attributable 
fraction (AF). 

We applied a newly developed global exposure mortality model 
(GEMM) by Burnett et al. (2018) to estimate the RR attributable to PM2.5 
exposure. 

RRi,j,m,n,s(ΔZi,m,n,s) = exp

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θj,m × ln
(

ΔZi,m,n,s
αj,m + 1

)

1 + exp
{

−
(ΔZi,m,n,s − μj,m)

ϑj,m

}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

Y. Wang et al.                                                                                                                                                                                                                                   

https://tntcat.iiasa.ac.at/SspDb/dsd?Action
https://landscan.ornl.gov/downloads/2008


Environment International 169 (2022) 107542

3

ΔZi,m,n,s = max
(
0,Ci,m,n,s − C0

)
(2)  

where Ci,m,n,s is the annual average PM2.5 concentration of specific age 
group m at a grid i in years n under scenario s. C0 is the theoretical 
minimum-risk concentrations of 2.4 μg/m3; and θj,m, αj,m,μj,m and ϑj,m are 
parameters that determine the shape of the concentration–response re
lationships (Table S3). 

The RR of O3 exposure for disease category j of a specific age group m 
at a grid i in years n under scenario s used the log-linear exposur
e–response function by Jerrett et al. (2009). 

RRi,j,m,n,s = expβj,m×Ci,m,n,s (3)  

where,βj,m is a coefficient of specific age groups estimated from ozone 
concentrations and respiratory mortality. The mortality risk coefficient 
for O3 exposure used in the analysis is based on Jerrett et al. (2009), and 
the data were analyzed from 448,850 subjects, with 118,777 deaths 
during an 18-year follow-up period. This study is one of the several 
available studies on the long-term effects of O3 exposure and is one of 
the few studies that consider risk values for age-stratified groups (30–50 
yr-old, 50–65 yr-old, and 65 + years- old). 

2.4. Driving factors decomposition 

Premature mortality depends on the joint effects of climate and 
emission changes (pollutant concentrations driven by climate and 
emission changes), population size, and population age structure. Age- 
dependent mortality is one of the determinants of overall (all age) 
mortality, however we ignore age-specific changes in mortality due to 
data limitations. To evaluate the contribution of each factor to prema
ture death, we projected the future changes in mortality due to indi
vidual factors. The impact of climate and emission changes (ICE) under 
the climate change scenarios was calculated by controlling the popula
tion size and adults groups as those in 2015 with projected future con
centrations (Eqs. (4)–(5)). 

A(Morn,s) =popage− free,s,2015 × yage− free × AFage− free,s,n (4)  

ICE (%) =
A(Morn,s) − A(Mor2015,s)

A(Mor2015)
(5) 

The adults group death was counted for PM2.5-related deaths among 
people aged ≥ 25 years and for O3-related deaths among people aged ≥
30 years. The popage− free,s,2015, yage− freeandRRage− free data corresponding to 
the age in the equation are listed in Tables S2-S4. The impact of popu
lation size (IPS) was calculated by considering the population size 
change and pollutant concentration effect, and then subtracting (ICE) 
(Eqs. (6)–(7)). 

B(Morn,s) =popage− free,s,n × yage− free × AFage− free,s,n (6)  

IPS (%) =
B(Morn,s) − B(Mor2015,s)

B(Mor2015)
− ICE (7) 

The impact of population age structure (IPA) was calculated by 
considering the effect of population size change, population age struc
ture, and pollutant concentrations and then subtracting IPS and ICE 
(Eqs. (8)–(9)). 

C
(
Morn,s

)
=

∑

age− group
popage− group,s,n × yage− group × AFage− group,s,n (8)  

IPA (%) =
C(Morn,s) − C(Mor2015,s)

C(Mor2015)
− IPS − ICE (9)  

3. Results 

3.1. Changes in PM2.5 and O3 concentrations 

Both PM2.5 and O3 concentrations declined from 2015 to 2100 in all 
scenarios, except for SSP3-7.0 (Fig. 1). Compared with the other sce
narios, SSP1-2.6 adopted the fastest implementation of air pollution 
controls and the lowest exposure level until the end of 2100. These 
changes are driven by massive emissions of anthropogenic aerosols and 
their precursors such as sulfur dioxide (SO2), organic carbon (OC) and 
black carbon (BC) (Wang et al., 2021a). In contrast, the weakly 
controlled scenario, SSP3-7.0, showed an increased and a persistent 
trend of PM2.5 and O3 concentrations throughout the entire period. In 
the SSP5-8.5 scenario, PM2.5 concentrations continued to decline until 
2100, but high methane concentrations would hinder the decline in O3 
concentrations until 2080 (Liao Hong 2021). The concentration ranges 
of PM2.5 and O3 in each scenario are shown in the shaded parts of 
Figs. S1 and S2, respectively. Simulations were carried out in ‘historical’ 
mode by CMIP6 models and the observed PM2.5 data were available for 
validation in two historical time periods, the baseline period 2013 to 
2014, and 2015 to 2021 under SSPs (Figs. S3-S7). The CMIP6 model- 
derived PM2.5 showed good agreement with the observed spatial dis
tribution of PM2.5. In terms of bias, compared with the observed PM2.5 
and O3, the CMIP6 model overestimated the average PM2.5 concentra
tion and underestimated the average O3 concentration. Fig. 1c and 
d showed that population-weighted concentrations of PM2.5 are much 
higher than the average PM2.5 levels. After 2030, the PWE of O3 is also 
higher than the average concentration and showing an overall trend of 
first rising and then falling. 

The overall population size of China decreased from 1,367.6–1,371.4 
million to 562.6–776.5 million during the study period, of which the 
declines in the SSP1-2.6, 2–4.5, 3–7.0, and 5–8.5 scenarios are 52.4, 
43.4, 58.9, and 52.3 %, respectively (Fig. 2a). Simultaneously, the 
population is aging rapidly from 2015 to 2100, with the smallest in
crease of 15.1 % (from 9.4 to 24.6 %) and the largest increase of 52.8 % 
(from 9.6 to 62.4 %) in the SSP 3–7.0 and SSP5-8.5 scenarios, 
respectively. 

3.2. Premature deaths attributable to PM2.5 and O3 exposure 

The nationwide premature deaths attributable to PM2.5 exposure are 
shown in Fig. 3(a). In the SSP3-7.0 and SSP5-8 scenarios, PM2.5-related 
deaths increase from 1.4 to 3.2 million (129 % increase relative to 2015) 
until 2060 (the targeted Chinese carbon–neutral year) and then drop 
slowly to 2.1 million (a 50 % increase from 2015) by the end of 2100. In 
contrast, the PM2.5-related deaths in the SSP1-2.6 and SSP2-4.5 sce
narios are less variable, resulting in 1.8 (a 28 % increase from 2015) and 
1.9 (a 36 % increase from 2015) million deaths by 2100. Among the four 
specific diseases that cause PM2.5-related deaths, IHD causes the highest 
number of deaths annually and is more concentrated in the elderly 
population (Fig. S8). 

From a long-term perspective (2015–2100), the O3-related mortality 
changed by 94.6 % to 171.6 % under all SSPs. The patterns of the O3- 
related respiratory deaths are similar in the SSP1-2.6, 2–4.5, 3–7.0 
scenarios, in which a peak number of deaths (around 0.31 million) occur 
in 2060. For scenario SSP5-8.5, O3-related respiratory deaths continue 
climbing to 0.46 million by 2075. Overall, the death toll is maintained at 
a low level in the SSP3-7.0 scenario. For every year in SSPs, high levels 
of PM2.5- and O3-related deaths were observed in northern and central 
China, especially in the Beijing–Tianjin–Hebei and the surrounding re
gions (Fig. S9). 

3.3. Drivers of changes in premature deaths 

In this study, we estimated the changes in the premature mortality 
burden attributable to PM2.5 and O3 exposure driven by the climate and 
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emission changes (PM2.5 and O3 concentrations driven by climate and 
emission change), population size, and population age structure, 
respectively. The changes in age-specific mortality were omitted here. 
The temporal change of the individual drivers on the deaths over time as 
compared to the deaths at baseline in 2015 is shown in Fig. 4. A positive 
value indicates an increase in premature mortality compared with that 
of the mortality in 2015. Overall, the increases in the number of deaths 
attributed to PM and O3 due to age structure changes are greater than 
the decreases in these numbers due to the changes in population size and 
exposure levels. This impact contributed by the age structure was the 
greatest in the SSP5-8.5 scenario. The impact of population size on PM2.5 
and O3-related deaths is small and positive before 2060–2080 
(depending on the scenarios and the pollutants) but negative thereafter. 
The impacts of pollution exposure from global climate and emission 
changes on PM2.5 and O3 related deaths are notably different for PM2.5 
and O3. For example, we observed an elevated negative contribution of 
the PM2.5 concentrations driven by climate and emission changes over 
time (except in the SSP3-3.7 scenario), and a mixed situation for the 
impacts of the O3 concentrations driven by climate and emission 

changes (positive impact in the SSP3-3.7 and SSP5-8.5 scenarios; 
negative impact in the SSP1-2.6 scenario). 

We calculated the contribution of climate and emission changes, 
population size, and population age structure to the PM2.5-related and 
O3-related mortality in eight temperature zones in China (see Fig. S10 
for the zone map) arranged in descending order of the temperature 
(Fig. 5). Overall, PM2.5-related deaths decreased in all regions relative to 
the baseline because of the benefits of the decline in PM2.5. Population 
aging remains the major driver of PM2.5-related mortality in all tem
perature zones, except in the cold temperature zone where the adverse 
population aging effects are rather small and significantly offset by the 
tremendous PM2.5 decline (100 %) in the SSP1-2.6 scenario. O3-related 
mortality is closely related to temperature zones relative to cold 
temperate zone, the contribution of O3 concentrations driven by climate 
and emission changes to mortality is higher in warm temperate zone 
(SSPs: 86.5–153.9 % vs 116.3–201.1 %). A spatial distribution map of 
the impact of climate and emission changes, population size, and pop
ulation age structure on PM2.5- and O3-related mortality is shown in 
Fig. S11. 

Fig. 1. The mean concentration and PWE of (a,c) PM2.5 and (b,d) O3 of multiple models from 2015 to 2100 in SSP1-2.6, 2–4.5, 3–7.0, and 5–8.5 scenarios.  

Fig. 2. (a) Projected exposed population size of all ages in SSPs (SSP1-2.6, 2–4.5, 3–7.0, and 5–8.5) in China from 2015 to 2100. (b) The proportion of the population 
aged above 65 years in four SSP scenarios in China from 2015 to 2100. 
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4. Discussion 

In this study, we estimated premature deaths attributable to ambient 
PM2.5 and O3 in SSPs from 2015 to 2100 in China and provided insight 
into the impact of the individual driving factors that induce a change in 
mortality, including pollutant concentrations, population size, and 
population age structure. In the coming decades, until 2070, the burden 
of premature death caused by PM2.5 and O3 will continue to rise, mainly 
due to the gradual aging of the population, which greatly offsets the 
positive impact of air pollution decline and population shrinkage. With a 
greater decline in air pollution and population size after 2070, the 
adverse impact of population aging on premature deaths related to 
PM2.5 and O3 is decreasing. 

We applied GEMM model to estimate the RR attributable to PM2.5 
exposure. The most widely used coefficients are derived from the Inte
grated Exposure-Response (IER) model developed by Burnett et al. 
(2014), which provide better predictions of RR in more polluted regions. 
However, a fundamental limitation of the IER model is that it assumes 
equivalent exposure and toxicity of PM2.5 from multiple sources. 
Recently, Burnett et al. (2018) constructed a GEMM model that con
structed that relaxed the contentious assumption in the IER model to 
avoid the estimation bias and covered a comprehensive range of PM2.5 
concentrations (2.4 μg/m3–84 μg/m3) by including new cohort data 
from China. Thus, more suitable to provide accurate estimates than 
previous models (Burnett et al., 2018). We observed the optimal 
pathway in the SSP1-2.6 scenario from 2015 to 2100, which showed the 
lowest sums of PM2.5- and O3-related premature deaths. The SSP1-2.6 
scenario follows the path of achieving the radiation-forcing target at 
the lowest cost. To achieve the expected radiation forcing (2.6 W/m2) in 
the future, greenhouse gas emissions must be limited by controlling coal 
consumption-intensive industries, improving coal efficiency, and 
switching to clean fuels, etc. (YanRan Lü, 2020). The Lancet Commission 
(Watts et al., 2015) pointed out that greenhouse gas emissions, pollut
ants, and changes in demographic characteristics will accelerate the 

Fig. 3. The mortality caused by (a) PM2.5 and (b) O3 from 2015 to 2100 in 
SSP1-2.6, 2–4.5, 3–7.0, and 5–8.5 scenarios. The bar represents the range of 
PM2.5- and O3-related mortality in SSP1-2.6, 2–4.5,3–7.0 and 5–8.5. 

Fig. 4. The sensitivity of climate and emission changes, population size, and population age structure on (a-d) PM2.5-related and (e-h) O3-related premature death 
from 2015 to 2100 in SSP1-2.6, 2–4.5, 3–7.0, and 5–8.5 scenarios. 
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threat to human health in the context of climate change. Implementing 
measures to reduce greenhouse gas emissions and pollutants can avoid 
more premature deaths and the loss of related benefits. Greenhouse gas 
emissions of CO2 and air pollutants have the same root and relationship, 
and their anthropogenic emissions originate from the burning of fossil 
fuels. The reduction of CO2 and air pollutants as a whole was considered 
and combined various external factors such as energy endowment, 
economic development, environmental changes, and policy orientation 
were considered to research the optimized combination of emission 
reduction measures from the perspective of coordinated emission 
reduction (Xu et al., 2020). 

We found that age structure had significant impacts on PM2.5 and O3 
related deaths, mainly due to the increased aging population and the 
higher risks of cause-specific mortality among the elderly population at 
baseline. The effect of population aging will far offset the benefits of 
reduced O3 and PM2.5 concentrations in the future. Recent studies have 
shown that elderly adults are more susceptible to environmental expo
sure owing to their slow metabolism (Hahad et al., 2021). Although the 
O3 concentration remained the lowest in the SSP1-2.6 scenario, the 
number of deaths caused by O3 was the lowest in the SSP3-7.0 scenario, 
in which the elderly people over 65 years old were the lowest among the 
four scenarios. Our findings agree with a study by Chen et al. (2018), 
which suggests that ignoring the age structure of the population may 
underestimate the future premature mortality related to PM2.5 and O3. 
In the future, the burden of disease, and economic costs associated with 
high pollution levels and aging populations will increase rapidly. This 
will place a heavy burden on the national healthcare system. The 
reasonable allocation of public medical resources can reduce mortality 
in response to differences caused by diseases. Strategies to improve the 
health of the elderly and reduce their exposure may help to reduce the 
health costs of environmental air pollution. The significance of our 

research emphasizes the need to take action in the future to control 
ambient air pollution in an aging population. 

Our study has several advantages. First, we use PM2.5 and O3 con
centrations from extensive CMIP6 modeling outputs instead of relying 
on single model output, and accounted for multiple factors, including 
climate change and socioeconomics, in these scenarios. Thus, it provides 
reliable estimates for the health impact analyses. Second, a series of 
integrated SSPs were used to construct future air pollution exposure 
under dynamic climate change. Previous studies relied on the pro
jections from the CMIP5 model, which did not account for the socio
economic impact. For example, Liu et al. (2021) projected the deaths 
related to PM2.5 in 2050 from the RCP8.5 scenario with different 
emissions (including the constant 2015 emissions, the 2050 current 
legislation emissions, and the 2050 maximum technically feasible 
reduction emissions). Chen et al. (2018) evaluated the future annual 
excess mortality related to short-term exposure to O3 in 104 cities across 
China under two climate and emission change scenarios (RCP4.5 and 
RCP8.5). Our assessment of the burden of deaths under multiple sce
narios will be useful in guiding future generations to achieve a green and 
sustainable environment. Finally, we estimated the impact of age 
structure when calculating the death toll of PM2.5 and O3 because 
different age groups have different susceptibilities to air pollutants, and 
the corresponding baseline mortality and exposure–response co
efficients are also inconsistent. Many studies have not considered age 
stratifications, especially the impact of aging populations, which may 
underestimate the number of premature deaths (Chowdhury et al., 
2018). 

Our study had a few limitations. First, although it is argued that by 
accounting for different age groups and by incorporating changes in 
population size this would be considered “ageing”, the mortality rates 
tend to vary largely by age group and scenario as discussed by Kc et al. 
(2018). It is worth noting that the future baseline mortality rate was 
related to many factors, and there is no way to accurately project the 
future improvement in living conditions and health services. In fact, 
because we consider age-specific mortality rates, when we consider age- 
structure changes, the effect of mortality rates should be reflected. In 
addition, the analysis of the trends in burden of disease due to partic
ulate matter, conducted in the framework of Global Burden of Disease 
project (Cohen et al., 2017) indicates that changes (decline) in age- 
standardized mortality in the period 1990–2015 compensated, to a 
large extent, effects of growing population, its ageing and increase in 
exposure in China. Our results might be overestimated if the age- 
standardized mortality further decreases in China in the future. Sec
ond, we acknowledge that the relative risk coefficient β of O3 and PM2.5, 
which was mainly based on studies in the United States and European 
countries, which increases the uncertainty of our estimates. Although 
there is some evidence for the effect of O3 on cardiovascular mortality 
(Kazemiparkouhi et al., 2020; Lim et al., 2019), the Global Burden of 
Disease (GBD) (https://vizhub.healthdata.org/gbd-compare/) only 
considers O3 to be associated with respiratory mortality, and to avoid 
controversy, we only considered respiratory diseases. Ignoring the ef
fects of O3 on other diseases, our results may underestimate the health 
risks of O3. In addition, Jerrett et al. (2009) used O3 exposure data from 
April to September to calculate RR. We only obtained O3 annual average 
concentrations from the CMIP6 models. The annual averages are lower 
than the warm season averages, which may also lead to underestimation 
of O3 risk in this study. Third, the central values of the risk coefficients 
were used in the mortality assessment, ignoring their confidence in
tervals, resulting in statistical uncertainty of the risk coefficients. We 
calculated the range of associated deaths using confidence intervals for 
the RR of O3 in Fig. S12 and found that the range of variation was around 
0.9–37 %. The risk coefficient for O3 used in this study is based on Jerrett 
et al. (2019) as it provides values for various age groups. Recently, 
several studies focused on the populations in the older age group (65 +
yr-old) and provided more precise risk coefficients for the elder group in 
the United States and European countries (Liu et al., 2022; Shi et al., 

Fig. 5. The sensitivity of climate and emission changes, population size, and 
population age structure on (a) PM2.5-related and (b) O3-related premature 
deaths from 2015 to 2100 in different temperature zones in SSP1-2.6, 2–4.5, 
3–7.0, and 5–8.5 scenarios. CTZ: cold temperate zone, MTZ: middle temperate 
zone, WTZ: warm temperate zone, PSZ: plateau subarctic zone, PT: plateau 
temperate, CS: central subtropical, SS: south subtropical, ET: edge tropical. 
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2021). Using these coefficients might decrease uncertainty in RR and 
mortality estimates. In the future, more studies including subjects in 
various age groups are needed. Moreover, such studies from other re
gions than Europe and North America are highly recommended. Fourth, 
in this study, we calculated the health effects of PM2.5 and O3 separately, 
and their sum is not meant to be the combined effects of PM2.5 and O3. 
Due to the lack of coefficients for the synergistic exposure–response 
relationship between PM2.5 and O3, we did not consider the synergistic 
effect of the two. Fifth, Jerrett et al. (2009) demonstrated differences in 
sensitivity to O3 by sex, with women at higher risk of death than men 
(RR:1.04 (1.03–1.07) vs 1.01(0.99–1.04)). Our study did not account for 
gender, which adds to the uncertainty. Finally, this study did not 
consider factors such as individual differences, personal exposure 
changes in age-specific mortality and indoor air exposure, which also 
increased uncertainty. 

5. Conclusion 

In this study, we projected the health burdens attributed to ambient 
PM2.5 and O3 from 2015 to 2100 under four SSP scenarios in China. The 
results indicate that in all SSP scenarios, the future death burden due to 
long-term exposure to PM2.5 will decrease by 2100 in China. In the SSP1- 
2.6 and 2–4.5 scenarios, the future burden of death in China caused by 
O3 will decrease by 2100. The decrease in deaths due to air pollution 
reduction and population change will be largely offset by rapid popu
lation aging from 2015 to 2100. Therefore, more aggressive air pollution 
reduction and medical measures for the elderly are required to prevent 
premature deaths and related economic impacts more effectively. 
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