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Abstract China has been suffering serious particulate matter
(PM) pollution in recent decades. Local emission and regional
transport both contribute to PM pollution. Determining the
contributions of local emissions vs. regional transport to PM
concentrations is crucial in making effective PM control pol-
icies. This paper reviews the recent research on the contribu-
tions of regional transport to PM pollution in four regions in
China, i.e., the northern China, eastern China, southern China,
and the western China, respectively. The major findings in-
clude (1) HYSPLIT is the most popular methods in studies in
all regions and often is used in combination with the CA,
PSCF, and CWT techniques to investigate the transport path-
ways and source origins; (2) during the relatively polluted
period, transport contributes over 50% of the PM concentra-
tions in Beijing, Shanghai, Hangzhou, Guangzhou, Hong
Kong, and Chengdu. Regional transport is important for PM
pollution in major cities of China; and (3) regional transport
exhibits clear seasonal variations and long term trends. The
findings have important implication for emission control pro-
grams in these regions.
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Introduction

Particulate matter (PM) has been recognized as a major atmo-
spheric pollutant that can cause various health problems, such
as such as respiratory diseases [20, 80], cardiovascular dis-
eases [16, 33, 55], lung cancer [56, 63], low birth weight,
and birth defects [34–36]. In addition, enhanced concentra-
tions of PM can absorb and scatter light and causes visibility
impairment [11, 12, 25, 47]. China has been experiencing
serious PM pollution in recent decades due to rapid economic
growth, industrialization, and urbanization. Many observa-
tional studies have revealed that annual concentrations of both
PM10 and PM2.5 have been at high levels in major cities in
China [1, 21, 25, 58, 77, 104]. Health effect studies have
estimated that over one million premature deaths can be at-
tributed to PM2.5 pollution in China [37, 49]. Visibility studies
have suggested that visibility has been continuously worsen-
ing associated with PM pollution during the last few decades
[2, 10, 25].

To design effective PM control programs, it is necessary to
understand the sources of PM. PM can be directly emitted into
the atmosphere (called primary PM, such as black carbon, and
dust) and can be formed through atmospheric chemical pro-
cesses (called secondary PM, such as sulfate, nitrate, and sec-
ondary organic aerosols) [60]. PM concentrations measured at
receptor sites in a city are a combination of contribution of
local emissions and transported PM from outside the city.
Determining the contributions of local emissions vs. transport
to PM concentrations is crucial in making effective PM con-
trol policies.
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Recognizing the important role of transport in PM pollu-
tion, recent studies have been conducted in various cities in
China using several different methods. However, systematic
understanding the impact of transport on PM pollution in var-
ious regions in China is lacking. The objective of this review is
to summarize recent research (mostly after 2010) on the con-
tributions of regional transport to PM pollution in China. We
focus on publications about regional transport of PM in China
in international peer-reviewed journals. In total, we review 77
publications, as shown in Table S1 in the supplemental mate-
rials. We first review the methods that have been used in these
studies, and then we summarize the major findings in each of
the four regions. We summarize the results into four regions in
China, i.e., the eastern (including Shanghai, Jiangsu, Zhejiang,
Fujian, Shandong, Anhui, Jiangxi, Hubei), southern (including
Guangdong, Guangxi, Hunan, Hainan, Hong Kong), western
(including Chongqing, Sichuan, Guizhou, Yunnan, Tibet,
Xinjiang, Qinghai, Gansu, Ningxia, Shaanxi), and northern
China (including Beijing, Tianjin, Hebei, Henan, Shanxi,
Inner Mongolia, Heilongjiang, Liaoning, Jilin). We find 22,
16, 10, and 21 studies in cities/subregions in the eastern[13,
14, 17–19, 24, 30, 39, 40, 59, 61, 64, 66–69, 71, 84, 86, 95, 97,
99], southern [3, 8, 9, 15, 26, 27, 44, 47, 50–52, 54, 62, 74, 81,
90], western [6, 7, 41, 46, 48, 75, 83, 93, 94, 100], and north-
ern China [4, 5, 23, 29, 31, 32, 38, 42, 43, 45, 57, 65, 70, 76,
82, 89, 92, 96, 98, 102, 103], respectively, and we find 8
studies that cover either the entire China or multiple regions
of China [22, 28, 53, 73, 79, 85, 91, 101] .

This review is organized as follows: in BMethods for PM
transport studies in China,^ we review the methods that have
been used for PM transport studies in China; in BResults of
PM transport studies in China,^we summarize the major find-
ings in the 77 studies; we finally conclude our review and
discuss the future research in BConclusions and implications.^

Methods for PM Transport Studies in China

Atmospheric dispersion models are widely used to study the
transport and diffusion of pollutants in the atmosphere. There
are two general methods to develop the models: Lagrangian
method and Eulerian method. Lagrangian method tracks the po-
sition and properties of an air parcel according to the mean wind
field data along the path that air parcel travels (called
Btrajectory^). The air parcels may be followed either forward
(called Bforward trajectories^) or backward (called Bbackward
trajectories^) in time [88]. In contrary, Eulerian method solves
the atmospheric properties (such as concentration of pollutants)
over time based on the conservation of mass in Bfixed^ points
(not following the trajectory) [87]. Lagrangian models are ideal
for single point sources and they are computationally efficient,
but they are not efficient for multiple sources and do not consider
complex chemistry processes. Eulerian models solve over the

entire domain and are ideal for multiple sources and also easily
handle complex atmospheric chemistry (i.e., Eulerian chemical
transport models), but Eulerian models require more computa-
tional sources which sometimes have problems with artificial
numerical diffusion. In addition, uncertainties associated with
the emission estimateswould cause bias in themodel predictions.
In the total 77 studies, 52 studies used the Lagrangian trajectory
model, the Hybrid Single-Particle Lagrangian Integrated
Trajectory (HYSPLIT) model, three studies used the
Lagrangian dispersion models FLEXPART, and 25 studies used
the Eulerian chemical transport models (there are three studies
used both HYSPLT and Eulerian chemical transport models).

Lagrangian Trajectory Model

HYSPLIT model was developed by the Air Resources
Laboratory (ARL) of the United States National Oceanic
and Atmospheric Administration (NOAA). Backward trajec-
tories are commonly calculated to investigate the air mass
origins and pathways that reach the receptor sites at a given
time using National Centers for Environmental Prediction
(NCEP) reanalysis data. Seventy-two- or 48-h backward tra-
jectories are typically used in most of the studies, although 24-
[23] and 120-h [45] backward trajectory analysis is also used
in a few studies. The altitude of the receptor site is set in the
range of 50 to 1000 m above ground level in the studies. Two
hundred meters is more often used to consider the ground
level PM concentrations. Zhu et al. [102] investigate the ef-
fects of the receptor heights on the results and found no sig-
nificant difference in the results with 100, 200, 300, 500, and
1000 m as the receptor height. After the backward trajectories
being calculated, several techniques are often used to further
determine the transport pathways and source origins:

(1) Cluster analysis (CA)

CA is a multivariate statistical analysis technique to divide
the trajectory data into distinct transport groups or clusters.
The GIS-based software TrajStat [78] is commonly used for
CA. There are two clustering methods in TrajStat: angle dis-
tance and Euclidean distance. Angle distance is based on the
direction from which the air masses that reach the site are
originated while Euclidean distance is based on the transport
positions along the pathways.

(2) Potential source contribution function (PSCF) method

The PSCFmethod is to identify the possible source areas of
the pollutants reaching the receptor site. The entire geographic
region covered by the trajectories is divided into an array of
grids (defined by the cell indices i and j). The PSCF value of
each grid cell is calculated using the following equation:
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PSCFi;j ¼ Si;j
T i;j

ð1Þ

where Si,j represents the number of trajectory endpoints for
which the measured pollutant concentration exceeds a thresh-
old value selected for this pollutant in the (i, j) grid cell, and Ti,j
represents the total number of trajectory endpoints that fall in
the grid cell. Therefore, grids with higher PSCF values indi-
cate that they are more likely to be the sources of the pollutant
concentrations measured at the receptor sites.

(3) Concentration weighted trajectory (CWT) method

The CWT method is to assign each grid cell a residence-
time weighted concentration by averaging the measured con-
centrations with their associated trajectories that cross the grid
cell. The CWT value is calculated using the following equa-
tion:

CWTi; j ¼ ∑m
k¼1Ckτ i;j;k
∑m

k¼1τ i;j;k
ð2Þ

where CWTi,j is the CWT value in the (i, j) grid cell, k is the
index of the trajectory,m is the total number of trajectories,Ck

is the pollutant concentration observed on arrival of trajectory
k, and τi,j,k is the time spent in the (i, j)grid by trajectory k.
Grids with higher CWT values imply that they are more asso-
ciated with high concentration measured at the receptor.

Lagrangian Dispersion Models

Three studies utilized the three-dimensional Lagrangian disper-
sion model, FLEXPART [4, 92], to determine the origin and
transport pathways of the air mass arriving in Beijing.
FLEXPART simulates the transport and dispersion of tracers
by calculating the trajectories of a large amount of particles
(air parcels), which are termed plume (cloud) trajectories.
Both studies use the Weather Research and Forecasting model
(WRF) to provide the meteorological fields to drive the
FLEXPART model calculation. Using the calculated backward
trajectories, the source of the air mass arriving at the receptor
sites can be directly estimated from the locations of their parcels.

Eulerian Chemical Transport Models

Three-dimensional Eulerian chemical transport models were
used in 25 studies to investigate the regional transport of PM
in China. The models include the Community Multi-scale Air
Quality (CMAQ) model (11 studies), the Comprehensive Air
Quality Model with Extension (CAMx) (eight studies), the
Weather Research and Forecasting model coupled with
Chemistry (WRF/Chem) (two studies), the Nested Air
Quality Predicting Modeling System (NAQPMS) (two stud-
ies), and the Global/Regional Assimilation and PrEdiction

System with the Chinese Unified Atmospheric Chemistry
Environment Module (GRAPES-CUACE) model (two stud-
ies). The models all include a full description of pollution
processes such as emission, atmospheric transport, deposi-
tion, chemical reaction, and gas-particle transfer. Two gen-
eral techniques are commonly used in Eulerian chemical
transport models to quantify the contributions of emissions
from different regions to the cities or regions of interest.
The first one is called the brute force method or sensitivity
method. In this method, a Bbase-case^ simulation is first
conducted including emissions in all regions, and then a
series of Bsensitivity^ simulations are conducted by
zeroing out emissions in a certain region. The difference
of pollutant concentrations between the sensitivity and the
base-case simulations is calculated and regarded as the
contributions of the emissions of that region. The second
method is generally called the Bregion-tagged^ method or
tracer method; in other words, the emissions from different
regions are tagged with specific names (tracers) and then
tracked through the transport, chemical transformation,
and deposition processes in model simulations. This way,
the contributions of the emissions of a certain region is
retained. Depending on the number of regions of interest,
the brute force method may need a large number of simu-
lations which can be computational intensive. Also, due to
the non-linear chemistry formation of secondary PM in the
atmosphere, the total of the individual region contributions
is not always equal to the overall concentrations. The
region-tagged method is more technically advanced and
the total contributions are conserved, but it often requires
to expand the model mechanisms.

Eulerian chemical transport models are often applied
with 3- to 12-km horizontal grid resolutions in a region-
al scale, although Jiang et al. [29] used 25-km resolu-
tion in their study over the north China, and Hu et al.
[22] and Ying et al. [85] used 36-km resolution in their
studies that covered the entire China. The Fifth
Generation Penn State/NCAR Mesoscale Model (MM5)
or WRF model simulations are conducted to provide the
meteorological fields that are required by the Eulerian
chemical transport models.

Figure 1 shows the statistics of the methods used in the
studies in different regions. HYSPLIT trajectory model is
the most common methods used in the transport studies in
all the four regions of China. FLEXPART Lagrangian
dispersion model is only applied in the studies in northern
China. Eulerian chemical transport model is the second
most used method, especially in southern China, but in
general, it still only accounts for a small fraction of the
studies. Figure 2 shows the techniques used in the
HSPLIT studies. CA, PSCF, or CWT methods have been
largely used in the HYSPLIT studies to investigate the
transport pathways and source origins.
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Results of PM Transport Studies in China

Northern China

Most of the studies in the northern China are in the North
China Plain (NCP, including Beijing, Tianjin, and Hebei prov-
ince). Studies indicate that northwest winds in spring have
contributed to the high spring PM10 concentrations in
Beijing [102]. Northerly winds in this region in spring would
have a diluting effect on pollutants in winter, while southerly
winds would bring in pollutants that have accumulated during
transport. During the polluted period, surface PM2.5 mainly

originated from sources inside this region (48–72%). In the
entire NCP area, southern Hebei represented the largest inter-
nal contribution (33%), while the main external contributions
came from Shandong (SD) (10%) and Henan (HN) (4%) [5].

Beijing is the core area of the NCP region, and most of the
studies conducted for the NCP region focused on Beijing.
Studies with the CMAQ model reveal that the contribution
of surrounding emissions accounted for 67.3 and 61.0% for
the first and second PM2.5 pollution peaks, respectively [89].
Studies with trajectory analysis reveal that southerly transport
is associated with high PM pollution in Beijing [4, 29, 102].
The source areas leading to high PM in Beijing are in Hebei
and Shandong, located in south to Beijing [22, 29, 45]. The
transport from the near Beijing areas such as Baoding and
Hengshui becomes more important during heavy PM pollu-
tion events [38]. The northerly transport is often associated
with strong winds and leads to better air quality in Beijing,
except during the dust storm events. In terms of the regional
source contributions, studies show that transport of non-
Beijing emissions are very important for PM concentrations
in Beijing [82]. The transport contributes over about 40% on
an annual basis [32] and contributes over 60% under the
southerly and westerly air flows [70]. The contribution of
transport during high PM pollution episodes is even larger.
The contribution of southerly transport is also confirmed by
Wang et al. [76]. In their study, they found that after the con-
trol measures were implemented, PM, sulfates, and nitrates
were significantly reduced when the northerly air masses
prevailed. When the polluted southerly air masses prevailed,
the local source control measures in Beijing did not effectively
reduce the ambient sulfate concentration due to the enormous
regional contribution from the North China Plain.

The transport contributions to PM in Beijing in different
seasons were determined in these studies, and seasonal varia-
tions in the transport contributions can be concluded. Beijing
is affected by trajectories from the south and southeast in
summer and autumn. In winter and spring, Beijing was affect-
ed not only by the trajectories from the south and southeast but
also by trajectories from the north and northwest [38]. The
regional transport contributes over 60% of PM2.5 in Beijing
in summer [82] and 55% in winter during extreme haze pol-
lution events [29]. From the seasonal analysis of PSCF calcu-
lation, high PSCF values are found over Hebei province in
spring and autumn and over Jiangsu province and Yellow Sea
in summer. In winter, local emissions become more important
[70]. The results of trajectory clustering and the PSCF method
demonstrated that regional sources could be crucial contribu-
tors to PM pollution in Beijing. The predominant clusters are
N (30%) and S (44%) in spring, S (73%) in summer, NW
(50%) in autumn, and NW (88%) in winter [70].Changes in
the regional transport over years are also observed. The main
source areas of PM10 have changed from the northwest to the
south and southeast of Beijing during 2009–2012. The trend

Fig. 2 Different techniques associated with trajectory model method
used in the transport studies in different regions of China

Fig. 1 Relative fractions of different methods used in transport studies in
different regions of China
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of transported contribution percentages increased from 2005
to 2010 with a linear rate of 1.2/year [70]. Regional contribu-
tions of PM2.5 in Beijing during 2013 were 46, 62, 52, and
39% in spring, summer, autumn, and winter, respectively [17].

Eastern China

The Yangtze River Delta (YRD) region is the main focus of
the studies in the eastern China. When particle pollution in-
creases, the effects of long-range regional transport signifi-
cantly increase. The inner regional effects from Jiangsu and
the outer regional effects from the upwind adjacent province,
Shandong, are crucial for the YRD region. [18]. Emissions
from the YRD contributed to over 70% of the O3 precursor
CO, with a majority from the YRD and the North China Plain
which are the main contributors to PM2.5 pollution in this
region, especially for the burning episode days [13]. During
dust storm events, this dust storm which broke out in Xinjiang
and Mongolia arrived in the YRD region after 2–4 days and
the transported dust particles contributed to the mean surface
layer concentrations of PM10 in the YRD region 78.9% [19].

Most of the studies for YRD region have been taken place
in the city of Shanghai. More than 60% of PM pollution
events in Shanghai can attribute to region transport [84]. The
air quality in Shanghai was mostly influenced by the air
masses from north, east, and west directions. The air masses
from north directions accounted for 44.8% of all the air
masses, followed by those from east directions (30.4%) and
those fromwest directions (24.8%) [68]. Two studies revealed
that long-range transport of dust can cause serious PM pollu-
tion in spring, and the transport pathways pass though the
areas such as Hebei and Shandong with high anthropogenic
emissions also contributed to high PM levels in Shanghai [17,
64]. The major possible source areas for Shanghai include
Hebei, Shandong, Anhui, and Jiangsu to Shanghai. With the
northerly air flow, regional transports can lead to high concen-
trations of PM in Shanghai, and long-range transport from the
northwestern China including the Inner Mongol had effects in
winter and autumn [18].

In Shanghai, regional contributions over four seasons were
36, 39, 45, and 35% in spring, summer, autumn, and winter,
respectively [17]. The northwest and the north paths were the
major air mass transport paths in December, among which
79.6% of the total trajectories came from mainland while
20.4% reached Shanghai through the ocean [17]. The most
potential source areas are located in YRD and the Circum-
Bohai-Sea Region near Shanghai in winter, Yellow sandstorm
and southwestern regions in spring, the southwestern coastal
regions in Zhejiang, Fujian and PRD region in summer, and
northern regions in China in autumn.

Regional transport is also important for other cities in the
eastern of China, such as Nanjing and Hangzhou. In Nanjing,
the possible source regions are mainly located in areas to the

northeast of the city. High aerosol pollution is mainly contributed
by regional transport associated with northeastern air masses
[61]. The high biomass-burning pollutant concentrations are
linked to the air masses from the western (summer harvest) and
southern (autumn harvest) areas [61]. The transport of pollutants
from Hebei, Henan, and Hubei probably contributed to the haze
pollution in Jiangsu. The sources affecting the extremely high
PM2.5 in Hangzhou are mainly located in southeastern coast of
Zhejiang and Fujian provinces, north part of Jiangxi, and central
part of Jiangsu province [86].

Southern of China

The key region of research in the southern China is the Pearl
River Deal (PRD) region. Super-regional transport was an
important contributor for both sulfates and nitrates in all ten
cities in PRD region in both winter and summer. The average
super-regional contribution of sulfate and nitrate reached up to
80 and 56%, respectively, in winter [50]. The source appor-
tionment result suggests that point source and super regional
source are the ones that contribute the pollutants most in the
rain water over PRD region [50]. The Hong Kong/PRD re-
gion’s super-regional transport and mobile vehicles are the
two major fine particle sources, contributing 62 and 21% of
the total figure in December and 42 and 28% in April [15].

The studies in the PRD region are mostly in Guangzhou
and Hong Kong. Regional transport also plays an important
role in the two cities. In wet season, Guangzhou was mainly
affected by the emissions from the south, including PRD re-
gion and the ocean areas. Regional transport contributes
11.6%. But in dry season, the pollutants transported from the
areas north of PRD region both played important roles con-
tributing 52.9% [9]. The trans-boundary PM10 transport con-
tributes nearly half of PM10 on average [8]. Three surrounding
cities (Foshan, Dongguan, and Huizhou) had a total emission
contribution of nearly 30% to Guangzhou’s PM10 concentra-
tion. The emissions from these three cities also accounted for
70 to 94% of the total trans-boundary contributions from
Guangzhou’s nine surrounding cities. In Hong Kong, an over-
all increasing trend is observed in ambient PM10 sulfate and
nitrate concentration. The local sources and ship emissions in
the South China Sea are not the cause of observed overall
increase trends. Evident increases in PM10 sulfate and nitrate
levels are observed in air masses originating from eastern
China [54]. Source analysis showed that the increased mass
concentrations on high PM days were mainly caused by air
pollutant transport from the outside-Hong Kong regions [54].
Monthly averaged regional contribution to Hong Kong is
69.4% in December and 53.8% in April [54]. Monthly aver-
aged super-regional contribution to Hong Kong is 69.4% in
December and 53.8% in April, indicating the high correlation
between air quality in Hong Kong and the emissions in
Mainland China [81].
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Western China

Studies in the western China are relatively less, compared to
the three regions discussed above. There are some studies in
the Sichuan Basin (SCB) and the Tibetan Plateau. The trans-
port pathways and potential sources of PM2.5 have been in-
vestigated during the extreme haze episode in winter 2013 in
SCB. This study revealed that over 77% of the air mass ap-
proaching Chengdu during winter of 2013 came from inside
the SCB. The main potential sources of PM2.5 were located in
southeast cities and the western margin of the SCB [46]. The
dust events in Chengdu were mostly influenced by desert
regions in western and northern China, different from dust
transport in northern and eastern China. The Qinghai-Tibet
Plateau prevented the direct entrainment of dust from the west,
and a similar northeastward turning of dust air was observed
before arriving in Chengdu [46]. Xin [83] suggested that in
Tibetan Plateau uplift area, in spring and winter, eastern
Xinjiang, border areas between Gansu and Inner Mongolia,
and southern Tibet were the dominant potential sources. The
study also revealed that Tibet in China was one of the potential
sources of PM10 in Xining [83]. During the monsoon period,
pollutants from SCB and eastern Yunnan province can be
transported to Lijiang (southeast to Tibetan Plateau) with high
loading of sulfate, ammonium, and some heavy metal ele-
ments [93]. During the dust events, the model simulations
showed that the Tibetan dust aerosols appeared at approxi-
mately 7–8 km above sea level, and the plumes originated
from the nearby Taklimakan Desert and accumulated over
the northern slope often Tibet Plateau during the summer [72].

Transport Contributions in Major Cities

Figure 3 shows percentage contributions of transport to PM
concentrations in Beijing, Shanghai, Nanjing, Hangzhou,
Guangzhou, Hong Kong, and Chengdu. Multiple studies have
been conducted in Beijing in different years and seasons. The

Fig. 3 The percentage
contribution of transport to PM2.5

concentrations in various cities/
episodes. The cities are BJ
Beijing, SH Shanghai, NJ
Nanjing, HZ Hangzhou, GZ
Guangzhou, HK Hong Kong, CD
Chengdu

Fig. 4 The transport directions in Beijing (BJ), Shanghai (SH), and Hong
Kong (HK)
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results indicate that transport contributes 43 (Nanjing) to 78%
(Chengdu). Transport contributes 55 (2013 winter) to 65%
(2012 winter) to the PM concentrations in Beijing. The con-
tributions of transport are also over 50% in Shanghai,
Hangzhou, Guangzhou, and Hong Kong. Contributions over
60% are found mainly in winter episodes when PM pollution
is more serious.

Figure 4 shows the transport trajectories from different di-
rections or regions summarized from the studies for Beijing,
Shanghai, and Hong Kong for over 1 year or longer time. The
prevailing transport directions are northwest (44%) and south
(34%) in Beijing and north (45%) and east (30%) in Shanghai.
In Hong Kong, 44% transport is from east China, and 31% is
from the ocean. The prevailing transport direction, combined
with high pollutant emissions in the upwind regions (such as
Hebei and Shandong located in the south to Beijing,
Shandong and Jiangsu located in the north to Shanghai),
causes high PM pollutions in these cities.

Conclusions and Implications

A few conclusions can be drawn from the review of the recent
research on the regional transport of PM in four regions of
China. Also, the results have important implications for emis-
sion control in these regions.

(1) Both Lagrangian and Eulerian models have been used in
studies in China. HYSPLIT is the most popular methods
in studies in all regions and often is used in combination
with the CA, PSCF, and CWT techniques to investigate
the transport pathways and source origins

(2) Studies indicate that transport contributes over 50% of
the PM concentrations in Beijing, Shanghai, Hangzhou,
Guangzhou, Hong Kong, and Chengdu. Regional trans-
port is important for PM pollution in major cities of
China. Therefore, to effectively control the PM pollu-
tions in these regions, regional or inter-regional emission
control plans are recommended.

(3) Regional transport pathways are quite different among
different regions. The prevailing transport directions are
northwest and southern Beijing and north and eastern
Shanghai. Southerly transport from Hebei and
Shandong leads to high PM pollution in Beijing, north-
erly and northwesterly transport from YRD, central and
northern China is important for Shanghai, and northerly
transport from eastern China is import for PRD, while
most of the PM in Chengdu is transported from inside the
SCB during haze pollution events. This implies that low-
ering the emissions in the northern and central China not
only will benefit the PM pollution there but also will
improve air quality in eastern and southern China.

To better understand the role of regional transport in the
formation of severe PM pollution and to design effective
emission control programs in China, we suggest that more
studies should be considered in the future.

(1) Although HYSPLIT analysis provides valuable informa-
tion about the transport pathways and source origins,
quantitative contributions of transport to the concentra-
tions at the receptor cannot be determined. More studies
using the Lagrangian dispersion models or Eulerian
chemical transport models should be conducted. Some
PM components, such as sulfate, nitrate, ammonium, and
secondary organic aerosols, account for a large fraction
of total PM mass and they are formed through chemical
processes during the transport pathways. Chemical trans-
port models are needed to simulate the processes.

(2) Most of the current studies focus on a few hotspot re-
gions/cities, such as Beijing, Shanghai, Guangzhou, and
Hong Kong. Studies in other regions are limited, espe-
cially in SCB and the Guanzhong Plain, which also ex-
perience severe PM pollution.

(3) Studies in Beijing have revealed that transport changed
over years with the change of climate and the change of
emissions in upwind areas. Considering the fast devel-
opment of economy and society in other regions of
China, the similar change is expected. Therefore, long-
term studies should be conducted in other cities/regions
to investigate the seasonal variations and long-term
trends of the regional transport.
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