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A B S T R A C T   

Current emission inventories with low spatial and temporal resolutions, slow updates, and great uncertainty can 
no longer meet the new demands for the precise prevention and control of air pollution. This study considered 
industrial sources of Jiangsu province in 2018 as the research object and divided key industrial sources into 16 
processes. Based on the continuous emission monitoring system (CEMS) data of key enterprises, millions of 
hourly scale monitoring data from 17842-point source enterprises at 169289 emission outlets were collected. An 
hourly scale high-resolution industrial source NOx emission inventory was constructed and compared with 
existing inventories. The total NOx emissions of power plants, industrial boilers, ferrous metal manufacturing, 
non-metallic mineral manufacturing, and chemical manufacturing industries in Jiangsu Province in 2018 were 
55, 27, 64, 28, and 3 Gg, respectively. The total emissions from industrial sources were high in summer, reaching 
a peak of 17 Gg in July, and low in winter, reaching 11 Gg in February. The emission factors of the power plants, 
coking, and cement industries decreased by 15.95%, 29.03%, and 51.61%, respectively. Hourly scales showed 
that the power plants had the most considerable fluctuation in 24 h emissions at 5.94%, with high emissions 
occurring in the afternoon and at night. However, the 24 h emissions of ferrous metal manufacturing fluctuated 
slightly, at only 3.22%, and the high emissions mostly occurred at night. The WRF-Chem model was used for 
simulation validation. The NO2 simulation results based on this study’s inventory were significantly better than 
those based on the Multi-resolution Emission Inventory for China (MEIC), with normalized mean biases (NMBs) 
of − 7.1% and − 10.7% for January and July, respectively, as opposed to 30.8% and 14.4% in the MEIC. The 
hourly scale high-precision emission inventory established in this study is significant for formulating real-time 
differentiated precise prevention and control policies and improving the accuracy of air quality models.   

1. Introduction 

With the rapid development of the economy and the growth of en
ergy consumption, industrial sources have gradually become a relevant 
source of air pollutants in China (Zhang et al.; Yu et al., 2010; Zhao et al., 
2012). NOx primarily originates from human activities, such as trans
portation, industrial production, energy production, and agricultural 
production, among other sources (Mauzerall et al., 2005; Lu et al., 2013; 

Carslaw, 2005). According to the Second National Pollution Source 
Census Bulletin, 6.5 million tons of NOx was emitted from industrial 
sources in China in 2017. Industrial sources were responsible for 36% of 
all emitted NOx, putting enormous pressure on the regional air quality 
and ecology. NOx is the key to the formation of several substances 
involved in VOCs and O3 (Atkinson, 2000; Wang et al., 2019). As the 
precursor of nitrate, NOx plays a crucial role in the generation of critical 
inorganic components, particularly in autumn and winter (Huang et al., 
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2021; Wang et al., 2013). NOx and its secondary pollutants pose a sig
nificant threat to human health, causing respiratory diseases, cardio
vascular diseases, and even cancer(Jerrett et al., 2009; Etim et al., 
2021). Moreover, nitrogen oxides can lead to eutrophication of water 
bodies (Jiang et al., 2020). Industrial sources are the primary and the 
most complex sources of NOx. The majority of NOx from industrial 
sources is generated through the combustion process. Nitrogen gas and 
nitrogen-containing compounds within the charge react with oxygen to 
produce nitrogen oxides during high-temperature production in power 
plants, blast furnaces, converters, and cement kilns, and some other 
industrial processes (Zhao et al., 2008; Akimoto and Narita, 1994). 
Moreover, the production of synthetic ammonia and nitric acid also 
results in the emission of NOx (Zhao et al., 2013). The diversity of in
dustrial sources, variety of pollutant emission characteristics, and large 
number of industrial enterprises make it extremely difficult to compile 
an inventory of industrial sources. 

Industrial source emission inventories are being developed in China 
to quantify industrial source pollution emissions more accurately. The 
Multi-resolution Emission Inventory for China (MEIC), established by 
Tsinghua University (Li et al., 2017; MEIC, 2017; Zheng et al., 2018), 
built a gridded emission inventory for China’s industry and power sec
tors using a gridded inventory method, thereby reducing the uncertainty 
of these typical source emissions estimates (Wang et al., 2014). An et al. 
(2021) updated the 2017 high-resolution air pollution emission in
ventory of the Yangtze River Delta region, which included industrial 
sources such as power plants, steel, and cement, and the NOx emissions 
from coal-fired power plants and boilers were 47% lower than the MEIC. 
Zhou et al. (2017) investigated, compiled, and revised plant-level pa
rameters related to the emission estimates of more than 6,000 industrial 
sources with a higher point source share. Recently, the Chinese gov
ernment has developed a series of measures and regulations for indus
trial sources. For example, ultra-low-emission technologies are generally 
required in power plants to achieve further reductions of 60% of the 
2018 levels by 2020 (Zheng et al., 2018). The mitigation effect of NOx is 
significant because of the transformation of the energy structure (He 
et al., 2019; Ding et al., 2017). Establishing an hourly grid emission 
inventory can better explore the mitigation effects of control measures. 

In support of national industrial emission standards, since 2007, 
China has developed a continuous emission monitoring system (CEMS) 
for high-emission facilities to measure facility levels and real-time stack 
concentrations. The CEMS data have promising applications in emission 
factor establishment, fine industrial pollutant emission inventory 
development and accounting, and pollution emission change analysis. 
Many scholars have calculated industrial source emissions based on 
CEMS data. Liu et al. (2019) found that the emission factors of SO2, NOx, 
and PM decreased by 1-2 orders of magnitude after ultra-low emission 
transformation by checking the data from 38 generating units of the 
China Energy Group. Others have used CEMS data to estimate 
power-generation emissions (Bo et al., 2015; Jia-Yu et al., 2017). For 
example, Zhang et al. (2018) integrated CEMS data to estimate emis
sions from coal-fired power plants in Jiangsu province in 2012. Bo et al. 
(2021) developed a high-precision, facility-based emission inventory of 
Chinese steel enterprises based on CEMS data to effectively evaluate the 
effect of ultralow emission reduction for the Chinese steel industry. The 
main limitation of these studies is that most were aimed at one industry 
and did not analyze the difference in the hourly/daily emission scale. 

In recent years, many atmospheric chemical transport models 
(ACTMs) have been developed and applied for operational air quality 
forecasts (Spiridonov et al., 2019; Sicard et al., 2021). The combination 
of ground monitoring stations measured data and ACMTs has become a 
reliable method for evaluating the accuracy of emission inventories. The 
coupled Weather Research and Forecasting model coupled with Chem
istry (WRF-Chem) model is widely used for regional air quality simu
lation worldwide (Zhang et al., 2017; Zhong et al., 2016). It can evaluate 
the accuracy of inventory and validate against ground-based observa
tions. Moreover, more accurate emission inventories can significantly 

improve the simulation results of many pollutants. However, the coarse 
resolution of the model limits its ability to accurately capture small-scale 
processes (Crippa et al., 2017). In this regard, the high-resolution in
ventory provides a unique opportunity to run ACTMs at a high spatio
temporal resolution. 

We selected Jiangsu, a typical province in eastern China with a 
developed industry, to develop and evaluate a high-resolution emission 
inventory of industrial sources based on CEMS data. The geographical 
locations and cities of the province are shown in Fig. S1. With a total 
area of 107,200 km2 and a population of 85.05 million (2021), Jiangsu 
ranked first in China in gross domestic product (GDP) per capita. In 
2018, its power generation, cement, pig iron, and steel outputs were 
among the top two in China (NBS, 2019a). Intensive energy consump
tion and industry have led to severe air pollution. According to the 2018 
Ecological and Environmental Status Bulletin of Jiangsu Province, all 13 
cities have failed to meet the secondary standards for ambient air 
quality. With increasing emissions from industrial sources, establishing 
a refined emission inventory of industrial sources in Jiangsu Province is 
essential for formulating targeted and real-time emission reduction 
plans. 

Based on CEMS data with high spatial and temporal accuracy and 
multi-source data, including environmental statistics, this study con
structed a point source and hourly scale emission factor database, and a 
high-precision activity level database for industrial equipment. Using 
this database, a set of time (hourly scale) and space (point scale) refined 
emission inventories of key industrial pollutants was developed using 
the bottom-up approach, and a high-precision hourly NOx emission in
ventory of industrial sources in Jiangsu province was comprehensively 
established using 2018 as an example. The inventory accuracy was 
evaluated using WRF-Chem and available ground-station-observation 
data. Additionally, we analyzed the contribution of different process 
levels and industrial categories to NOx emissions. The hourly scale high- 
precision emission inventory is significant for formulating real-time 
differentiated precise prevention and control policies. For instance, 
real-time emission inventories were utilized during the Olympic Games 
to monitor pollutant emissions, regulate and control industrial enter
prises, road traffic, and construction activities (Streets et al., 2007). 
Furthermore, a high-precision inventory can greatly improve the accu
racy of simulating pollutant levels (e.g., NO2, PM2.5) through atmo
spheric transport models. 

2. Data and methods 

2.1. Classification of emission sources 

Based on literature surveys and integration, this study obtained the 
main processes of industrial-source NOx emissions and subdivided NOx 
emission sources into four levels (Table 1). One level of classification 
includes mainly stationary combustion and industrial sources. Station
ary combustion sources can be subdivided into power plants and in
dustrial boilers, while industrial sources include ferrous metal 
manufacturing, non-metallic mineral manufacturing, and chemical 
manufacturing. Most industrial NOx emissions arise from high- 
temperature combustion processes. We have compiled a list of temper
ature ranges for various industries based on previous research and 
presented it in Table S1. 

2.2. Emission estimation methods 

The continuous emission monitoring system monitors the emission 
concentration of NOx and other pollutants and the operating conditions 
of the equipment in real time, with hourly resolution and timely up
dates, which provides the possibility of its application to the establish
ment and optimization of emission inventories. A bottom-up approach, 
based on CEMS data, was used to construct a highly accurate NOx 
emission inventory. According to the equipment point source 
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characteristics and point source information of the industrial enterprises 
contained in the CEMS data; the industrial sources were defined as point 
sources for calculation. The hourly emission factors for each industrial 
point source were calculated by combining the measured CEMS data 
with parameters related to emission factors such as theoretical flue gas 
volume, which were combined with industrial point source activity 
levels from environmental statistics to calculate pollutant emissions, 
thus avoiding the use of many indirect parameters and related as
sumptions (Tang et al., 2019; Kan et al., 2019). The calculation formula 
is as follows: 

Ei,j,h =
∑

k
Ai,j,k,h × EFi,j,k,h (1)  

where i represents different industrial point sources or industrial 
equipment; j represents different industrial sectors; k is the different 
process types/fuel types of industrial production; h is the time (h); E is 
the NOx emissions calculated based on the CEMS method (t); A is the 
activity level of industrial enterprise (industrial product output, fuel 
consumption); EF is the hourly emission factor based on CEMS, which is 
the pollution emissions per unit of production. Simultaneously, we 
established the emission inventory of the traditional method (Section 
S1) for comparison with the emission inventory method optimized by 
CEMS data. 

2.3. Activity levels 

2.3.1. Estimation of activity levels in power plants 
Other detailed activity level parameters are required for the fine 

scale bottom-up emissions inventory of power plants. Gu et al. (2022) 
introduced the definition of "power generation capacity", which signif
icantly reduced the uncertainty of fuel consumption estimates for unit 
size and fuel type. In this study, the parameters of (2), (3) and (4) 
improved the activity level data to show the hourly resolved data. 

Ai,k,h = Gi,k × OPTi,h (2)  

Gi,k = Ui × P ×
H0

Hk
(3)  

OPTi,h = Ti,h × f (4)  

where G is the generation capacity of the thermal power units; U is the 
installed capacity of the unit (MW); P is the standard coal consumption 
for power generation (gce/kWh); H0 is the low-level heat content of 
standard coal (kJ/g); H is the low level heat content of raw coal, natural 
gas and other fuels consumed by units of different fuel types (kJ/g); OPT 
represents the power generation utilization hours of the power plant; T 
represents the number of hours of processed CEMS data; f is the average 
load rate, which is equivalent to the conversion coefficient of generation 
utilization hours and operation hours, and the value is 1.1. 

2.3.2. Activity levels in other industries 
The main sources of activity data by category are summarized in 

Table S2 in the supplement. Most coal consumption in Jiangsu Province 
was in the power and industrial sectors, with household coal con
sumption accounting for only 0.02% of the total coal consumption in the 
province in 2018 (NBS, 2019b), suggesting the significance of reducing 
uncertainty in emission estimations for power and industrial plants. 
Therefore, we used information on the activity level of some industrial 
source enterprises, such as the industry they belong to, the status of their 
process equipment, and the latitude and longitude of their enterprises, 
contained in the self-monitoring information release platform of Jiangsu 
provincial emission units. By combining various activity level data, such 
as public documents, environmental statistics, and yearbook data (NBS, 
2019b, 2019c, 2020), high-precision activity level data of NOx industrial 
emission sources in Jiangsu province were obtained. There were 17842 
industrial enterprises as point sources in the emission inventory of 
Jiangsu Province established in this study. The spatial distribution is 
shown in Fig. 1. For the power industry, the total activity levels (coal, 
natural gas, and other fuel consumed for power generation) allocated by 
the power generation capacity (2.3.1) were 101%, 104%, and 109% of 
the provincial statistics, respectively. 

2.4. Emission factors 

CEMS data have the advantages of high spatial and temporal accu
racy, fast updates, and realistic data. The introduction of point source 
level and hourly scale CEMS data has significantly improved the spatial 
and temporal resolution of the emission inventory (Tang et al., 2019; 
Kan et al., 2019). CEMS data for 169 289 emission outlets in Jiangsu 
Province were obtained from the Jiangsu Provincial Emission Unit 
Self-monitoring Information Dissemination Platform (http://218.94.7 
8.61:8080/newPub/web/home.htm), and 11 703 monitoring outlets 
containing NOx emissions were screened. CEMS consist of sensors, gas 
analyzers, data processing systems, calibration systems, and communi
cation systems. CEMS data include the monitoring time of different 
equipment point sources, flue gas flow rate, equipment operation status, 
real-time concentrations of pollutants (such as NOx, SO2, PM), and 
converted concentrations of reference oxygen content. Various types of 
sensors, including ultraviolet absorption, nitrous oxide/nitrogen oxide 
(NO/NO2), and electrochemical methods, are commonly utilized to 
measure NOx (Jang et al., 2009). The measurement procedure of CEMS 
adheres to rigorous standards outlined in HJ 75–2017 and HJ 76–2017 
(MEP, 2017a; MEP, 2017b). CEMS are typically installed in large in
dustrial point sources, with approximately 85% of the activity levels 
among the main industrial emission sources having CEMS equipment 
installed. For instance, 87.1% of power plants, 85.2% of steel plants, and 
84.6% of cement plants. In industries with low CEMS installation rates, 
such as industrial boilers and chemical plants, we replace the emission 
concentration of companies without data using the average annual 
emission concentration in that industry (Section 2.4.1). 

2.4.1. Data filtering and processing 
CEMS is subject to a wide range of regulations and regulatory doc

uments aimed at ensuring the quality and reliability of data. These 
include the development of specifications and technical guidelines for 

Table 1 
Classification of NOx emission inventory sources in Jiangsu Province.  

1 level 2 level 3 level 4 level 

Stationary 
combustion 
sources 

Power plants Coal Grate-fired/ 
Pulverized coal/FBC 
boilers 

Gas 

Other fuels Grate-fired/ 
Pulverized coal/FBC 
boilers 

Industrial boilers Coal 
Gas 

Industrial 
sources 

Ferrous metal 
manufacturing 

Sintering Belt sintering 
Pelletizing Vertical furnace/ 

belt roasting 
Coking Pounding/top 

loading/heat 
recovery 

Iron making Blast furnace 
Rolling steel Hot rolled/cold 

rolled 
Non-metallic 
mineral 
manufacturing 

Cement New dry process/ 
vertical/rotary kiln Lime 

Brick and tile 
Chemical 
manufacturing 

Petrochemical Crude Oil Smelting/ 
Catalytic Cracking 

Coal 
processing 

Coking 

Fine 
chemicals 

Nitric acid 
manufacturing  
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the proper operation, maintenance, and examination of the CEMS 
network (Zhang et al., 2011). Additionally, plants are required to 
conduct regular calibration, maintenance, and verification of CEMS in
struments (MEP, 2007; MEP, 2017b). The Ministry of Environmental 
Protection of China has also introduced third-party institutions to 
conduct technical inspections and data acceptance on CEMS (MEP, 
2007), including CEMS technical indicator acceptance and network 
acceptance to ensure the data accuracy. Companies whose CEMS data 
fails to meet the standards may face penalties. To deter the falsification 
of CEMS data, punitive measures have been implemented. Severe of
fenders may be subjected to sentencing for counterfeiting. 

Yet zero values and abnormal observations exist in the CEMS data, 
mainly due to technical errors (Tang et al., 2019), and we pre-processed 
the CEMS data in combination with the flue gas monitoring specification 
to ensure the accuracy of the emission factors (MEP, 2007). First, 
abnormal values (negative and extreme values) in the CEMS concen
tration data were filtered and processed according to the HJ/T75-2007 
specification (MEP, 2007). Second, monitoring values under abnormal 
operating conditions (shutdown or maintenance status) were zeroed and 
recorded in conjunction with monitoring information for shutdown/
maintenance CEMS concentration data. Finally, we defined the missing 
data in the CEMS for non-maintenance/prolonged shutdown as missing 
measurement data and used a linear interpolation method to fill. As 
some small companies have not installed CEMS and the means of data 
acquisition were relatively limited (5.3% of the activity level), this study 
supplemented the data of companies without online monitoring data. 
For industrial sectors with continuous online monitoring data, such as 
power plants and sintering, the average values of the online monitoring 
data of the same industry were used to supplement the concentrations of 
enterprises without data. For industrial sectors with discontinuous 
monitoring (monthly or quarterly scale), such as iron making and steel 
rolling, the annual average value of company data with online moni
toring data was selected as the annual emission concentration of 
pollution sources. 

2.4.2. Calculation of emission factors 
Combining the processed CEMS concentration data with the theo

retical flue gas volume and other parameters, we defined the point 
source and hourly scale emission factor calculation method (Equation 
(5)). The theoretical flue gas volume of ferrous metal manufacturing, 
non-metallic mineral manufacturing, and other industries with product 
output as the activity level comes mainly from the pollution source 
survey manual. The theoretical flue gas volume for industries in which 
fuel consumption is the activity level, such as power plants and indus
trial boilers, is related to fuel type, calorific fuel value. (Equation (6)). 
The specific formula is as follows: 

EFi,j,k,h = Ci,j,k,h × Vj,k (5)  

Vk = 1.04 ×
QL

4186.6
+ 0.77 + 1.0161 × (α − 1) × V0 (6)  

where V is the theoretical flue gas volume, which represents the flue gas 
volume per unit activity level; QL is the lower calorific value of the fuel, 
which is related to the fuel type; α is the air excess coefficient (1.4); and 
V0 is the theoretical air volume (5.525908 m3/kg) (Yu et al., 2010). The 
post-reduction emission factor, which already includes the influence of 
pollutant control technology (if any), is directly available here, as CEMS 
monitors are installed at the stack and measure the post-reduction 
emission concentration (MEP, 2007). 

Given that the emission standards policy and related regulations 
focus on emission concentrations, the CEMS dataset has high-quality 
data regarding emission concentrations but lacks a large proportion of 
other emissions data (particularly on flue-gas rates). Thus, we introduce 
theoretical flue-gas rates, which were estimated based on sufficient field 
research by the Ministry of Environmental Protection (MEP) (MEP, 
2017b). Comparing the CEMS monitoring samples with theoretical 
values showed that the actual flue gas volumes were typically close to 
the theoretical values within a possible range of 15.2% at a 95% con
fidence level. These results are consistent with those of Bo et al. (2021), 
validating the use of theoretical flue gas volumes. Additionally, in the 
case of flue gas leakage, introducing theoretical flue gas volumes can 
effectively avoid severe underestimation of emission factors (Tang et al., 
2019; Gilbert and Sovacool, 2017). Combined with the processed CEMS 
concentration data and emission factor-related parameters such as 
theoretical flue gas volumes, we calculated hourly scale point 
source-based emission factor data for key industrial sources of NOx. The 
annual average emission factor data for each industry are shown in 
Table 2. 

2.5. Spatiotemporal allocation methods 

To calculate the hourly emission inventory of industrial sources, we 
need to allocate activity level data on an hourly scale. For industries 
with continuous online monitoring data, we allocated the annual ac
tivity level of the company according to the annual operation hours of 
different monitoring ports after processing, to obtain the activity level 
on an hourly scale. For industries not continuously monitored online, 
such as ironmaking and steel rolling, which account for a relatively 
small proportion of emissions, we allocated their annual activity levels 
to monthly scales in proportion to the monthly activity levels from 
environmental statistics and then averaged them out to each hour, 
whose temporal spectrum of monthly changes in activity levels is shown 
in Fig. 2. In space, we used point sources for the calculation. For the 
power plants, we adopted the method of power generation capacity and 
average utilization hours in 2.3.1 to get accurate fuel consumption. For 
industries with significant emissions and abundant available informa
tion, such as ferrous metal manufacturing and non-metallic mineral 

Fig. 1. Spatial distribution of power plant, ferrous metal smelting, non-metallic mineral smelting, and chemical companies (a) versus coal-fired boiler and gas-fired 
boiler companies (b) in this study. 
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manufacturing, a comprehensive method of determining actual 
pollutant emissions (from the pollution discharge permit network) 
should be adopted to allocate space at the activity level. For industries 
with low emissions and few accessible information sources, such as 
petrochemicals and industrial boilers, an indirect spatial allocation 
method was used for the estimation. 

2.6. Accuracy evaluation of emission inventory 

To verify this, we collected other emission inventories based on 
Jiangsu Province for quantitative comparison and comparative analysis 
of the spatial distribution with this inventory. The WRF-Chem model 
was also used to simulate the concentrations of NO2 and PM2.5 in the 
Jiangsu Province in January and July 2018 between this study and the 
MEIC inventory. The results were compared with the observed data from 
each monitoring station in this area. A two-layer nested model with a 
spatial resolution of 9 × 9 km versus 3 × 3 km was used for this simu
lation. We redistributed the MEIC inventory with an original horizontal 
resolution of 0.25◦ × 0.25◦ for consistency with our provincial in
ventory. Remarkably, other sources of NOx emissions in Jiangsu Prov
ince (traffic sources, agricultural sources) and NOx emissions from 
regions outside Jiangsu Province were taken from the MEIC inventory 
when conducting the inventory simulation validation for this study. The 
simulation performance of different emission inputs was also assessed 

using available observations from state-owned monitoring stations in 
Jiangsu Province, and the simulation results were validated by calcu
lating the normalized mean deviation (NMB) and correlation coefficient 
(R). Section S3 presents the domain and setup of the model system. 

3. Result 

3.1. Total emission and source contributions 

The NOx emissions from industrial sources in Jiangsu Province were 
1763 Gg in 2018 (Fig. 3). Because of the high nitrogen content of fuels 
such as coal and natural gas, power plants, and ferrous metal 
manufacturing, which use large amounts of fossil fuels, they have 
become the primary sources of NOx emissions, accounting for 31% and 
36% of industrial source emissions in this study, respectively. The 
chemical industry, with low energy consumption and influenced by 
processes, only produced 2.8 Gg (2%) of NOx emissions. 

Power plants accounted for 31% of NOx emissions, as they accounted 
for the majority of the energy consumption in Jiangsu Province. 15.6 
billion tons of coal were consumed by thermal power generation in 
Jiangsu province in 2018, accounting for 61% of provincial coal con
sumption (NBS, 2019b). Although the ultra-low emission transformation 
of power plants in Jiangsu Province was primarily completed in 2017 
(Tang et al., 2019), and the NOx emission concentration has been 
decreasing year by year because of the increasing demand for social 
electricity, the installed capacity and power generation of the thermal 
power industry have been increasing year by year. Thermal power 
plants are important sources of NOx gas. 

Industrial boilers accounted for 15% of the NOx emissions. In 2018, 
the coal and natural gas consumption of industrial boilers in Jiangsu 
Province accounted for only 10.98% and 23.24% of the annual con
sumption, with an average concentration of 86.18 mg/m3 for coal-fired 
boilers and 66.94 mg/m3 for gas boilers, both 2–3 times that of power 
plants. Although the fuel consumption of industrial boilers is not large, 
the NOx emission concentration remains high because of their large 
volume, the difficulty of effective pollution control measures, and the 
low installation of denitration equipment. The promotion of the com
plete elimination and transformation of industrial boilers is an impor
tant topic in China’s air pollution control. 

The ferrous metal manufacturing industry has always been an 
important source of NOx. Jiangsu Province ranked first in the country, 
with pig iron production of 67.3 million tons in 2018, accounting for 9% 
of the national total (NBS, 2019c), and its NOx emissions were similarly 
high. Ferrous metal manufacturing contributes 23% of the national 

Table 2 
Annual average values of emission factors for each source based on CEMS data.  

1 level 2 level 3 level 4 level Units Emission factors 

Stationary combustion sources Power plants Coal Grate-fired g/kg fuel 0.36 
Pulverized coal g/kg fuel 0.50 
FBC g/kg fuel 0.32 

Gas – g/m3 fuel 0.66 
Other fuels – g/kg fuel 0.57 

Industrial boilers Coal Grate-fired g/kg fuel 0.86 
Pulverized coal g/kg fuel 1.23 
FBC g/kg fuel 0.75 

Gas – g/m3 fuel 0.72 
Industrial sources Ferrous metal manufacturing Sintering Belt sintering g/kg products 0.48 

Pelletizing Roasting g/kg products 0.04 
Coking Coke ovens g/kg products 0.41 
Iron making Hot air furnaces g/kg products 0.09 
Rolling steel – g/kg products 0.06 

Non-metallic mineral manufacturing Cement Cement kilns g/kg products 0.39 
Lime Lime kilns g/kg products 0.14 
Brick and tile Roasting g/kg products 0.15 

Chemical manufacturing Petrochemical Petrochemical furnaces g/kg fuel 1.69 
Coal processing Coke oven chimney g/kg products 0.41 
Fine chemicals Nitric acid g/kg products 0.24  

Fig. 2. Timeline of monthly changes in activity levels for selected indus
trial sources. 
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industrial sources of NOx emissions (NBS, 2019d). As an 
energy-intensive industry, the steel production process is characterized 
by large output and high emissions. The average concentration of sinter 
heads reached 160.58 mg/m3 in 2018, and only 18% (covering 35% of 
the production) of steel plants had deployed NOx control equipment by 
the end of 2018 (Bo et al., 2021). 

The cement production process in the non-metallic mineral 
manufacturing industry generates significant NOx emissions. China’s 
cement production reached 2.2 billion tons in 2018, accounting for 56% 
of the global market share (An et al., 2021). NOx in the cement industry 
is mainly generated in the kiln tail of clinker firing. The cement industry 
has a large output and high emission concentration, with a monthly 
average concentration of 151.4 mg/m3, which significantly contributes 
to NOx emissions. The chemical manufacturing industry primarily 
generates NOx during coal processing. The coke output in Jiangsu 
province was 14.7 million tons in 2018, among the highest in China 
(NBS, 2020). In addition, crude oil processing and nitric acid production 
also generate small amounts of NOx emissions. 

3.2. Comparisons with other studies 

3.2.1. Comparisons of total emissions 
A comparison of the 2018 industrial source NOx emissions from 

Jiangsu Province in this study with other studies is shown in Table 3, 
including the emission inventory of this study based on traditional 
methods, inventories of other traditional emission factors (Zheng et al., 
2018; An et al., 2021; Li et al., 2017; Tao et al., 2018), and inventories 
based on CEMS data (Liu et al., 2019; Bo et al., 2021; Tang et al., 2019). 
The NOx emissions estimated in this study were lower than those esti
mated in other studies for all the industries. The traditional emission 
factor method calculated emissions for power plants, industrial boilers, 
ferrous metal manufacturing, non-metallic mineral manufacturing, and 
chemical manufacturing industries to be 680%, 966%, 184%, 498%, and 
279%, respectively, of the CEMS-based method in this study. The CEMS 
data used in this study have been comprehensively optimized for these 
industries, resulting in much lower emission factors than the traditional 
method, and thus a greater reduction in NOx emissions estimation. The 
industrial NOx emission density based on the inventory of this study is 
much lower when compared to traditional methods and MEIC. However, 

Fig. 3. NOx emissions from industrial sources by Industry in Jiangsu Province in 2018.  

Table 3 
Comparison of NOx emissions in this study with other studies.  

Region Data sources Base 
year 

Annual NOx emissions (Gg yr− 1) Emission density 
(t km− 2) 

Power 
plants 

Industrial 
boilers 

Ferrous metal 
manufacturing 

Non-metallic mineral 
manufacturing 

Chemical 
manufacturing 

Jiangsu This study a 2018 54.7 26.9 64.3 27.5 2.8 1.7 
This study b 2018 371.9 259.9 118.0 137.1 7.8 8.7 
MEIC (2017) 2017 318.6 649.5 (total industrial emission except power plants) 9.4 
DPEC (2020) 2020 121.6 593.1 (total industrial emission except power plants) 6.9 
Tang et al. 
(2019) 

2015 100.8      

Tao et al. 
(2018) 

2016  109.3     

Bo et al. 
(2021) 

2018   75.5    

Liu et al. 
(2019) 

2015    62.0   

Yangtze Delta An et al. 
(2021) 

2017 446.5 418.0 105.2 240.5 39.6 5.9 

USA EPA (2017) 2017      0.4 
Texas (USA) 0.7 
California 

(USA) 
0.1 

EU EEA (2018) 2018      1.7 
Germany 

(EU) 
2.4 

Note: This study a represent the emission inventory based on CEMS data of this study, This study b represent the emission inventory based on traditional methods of this 
study (Section S1). 
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there is still a significant gap between the emission density in Jiangsu 
and the low emission density observed in the United States. Therefore, it 
is crucial to continue promoting the installation rate of end-of-pipe de
vices or the transformation of energy structure in order to further reduce 
industrial NOx emissions. 

NOx emissions from power plants accounted for only 17% of the 
emissions estimated by the MEIC in 2017, and 45% of the emissions 
predicted by the DPEC for 2020. This suggests that previous studies 
overestimated NOx emissions from power plants. Tang et al. (2019) also 
used CEMS data to calculate NOx emissions in Jiangsu Province in 2015, 
which could be used as a reference for this study. The 2018 NOx emis
sions from the power plant industry in this study were only 54% of the 
emissions in 2015 estimated by Tang et al. (2019), which showed the 
significant effect of ultra-low emission reduction in the thermal power 
industry. The emissions of industrial boilers were also far lower than 
those of traditional methods, which were 24.6% of the industrial boiler 
emissions in 2016 estimated by Tao et al. (2018). Twenty-nine thousand 
boilers were phased out in Jiangsu province from 2015 to 2017, and the 
coal consumption of coal-fired boilers decreased by 34%. Major desul
furization equipment has gradually changed, and large-capacity boilers 
have also undergone ultra-low emission reduction (Wang et al., 2021). 
Unlike traditional methods, CEMS equipment reflect the emission 
changes of industrial boilers in a timely manner. 

Emissions from the ferrous metal manufacturing industry were 54% 
of those from the traditional method, which is not far from An et al. 
(2021). Only 18% of the plants (covering 35% of production) had NOx 
control equipment installed between 2015 and 2018 (Bo et al., 2021). 
With the start of ultra-low emission reductions in the steel industry in 
2018, the NOx emission factor of the steel industry had gradually 
decreased, with the CEMS-based emission factor for the sintering ma
chine in 2018 being only 0.48 g/kg, 50% of the traditional method. NOx 
emissions from the non-metallic mineral manufacturing industry 
accounted for only 44% of the 2015 emissions estimated by Liu et al. 
(2019). With the implementation of new national emission standards in 
the cement industry in 2014, the emission factor of the cement industry 
in Jiangsu Province began to decrease year by year. The CEMS-based 
annual average emission factor of 0.40 the traditional 2018 was only 
19% of that of the traditional method. NOx emissions from the chemical 
manufacturing industry are also far lower than those estimated using 

traditional methods and An et al. (2021). Only the crude oil processing, 
coal processing, and nitric acid production industries, which have high 
NOx emissions in the chemical manufacturing industry, were selected for 
the calculation in this study. Their CEMS based emission factors were 
1.69 g/m3, 0.42 g/kg and 0.2 g/kg respectively, which were lower than 
the traditional methods. 

It should be noted that CEMS lack information regarding fugitive 
emissions, accidental releases, and additional ground level emissions 
resulting from internal plant activities such as material transportation 
and raw material storage. While we have attempted to address this issue 
through methods such as downward allocation of total activity levels 
(Section S2) and theoretical smoke emissions (Section 2.4.2), there may 
still be deviations from actual emissions. This could explain the differ
ence in emissions compared to inventories based on traditional methods. 

3.2.2. Comparison of spatial distribution 
To further examine the differences in emission estimates and spatial 

distribution between different emission factor data sources and emission 
allocation methods, we quantitatively compared the Jiangsu Province 
portion of the Yangtze River Delta high-precision inventory in 2017 with 
this study (Fig. 4) (An et al., 2021; Zhang et al., 2019; Zhou et al., 2017), 
mainly including NOx emissions from power plants and NOx emissions 
from industry (where industry refers to industrial sources other than 
power plants in this study). The allocation of the inventory for this study 
to 0.25◦ × 0.25◦ grids was consistent with the resolution of Zhou et al. 
(2017) and could be used to calculate the emission correlation co
efficients for all grids. 

The grid point distribution of power plant emissions in this study was 
similar to that of Zhou et al. (2017). Owing mainly to the relatively 
transparent and easily available information on power plants, good 
consistency was found for NOx emissions from the power sector in the 
two inventories, with a correlation coefficient of 0.52. Even though the 
fundamental information of power plants is more accessible than that of 
other industry sources, mismatches still exist in different data sources. 
The difference was partly due to the uncertainty caused by the utiliza
tion of the area source and the lagging estimation of emission factors in 
Zhou et al. (2017)’s inventory. The grid point distribution of industrial 
industry emissions in this study was approximately the same as that of 
Zhou et al. (2017), with a correlation coefficient R of 0.59. However, the 

Fig. 4. Comparison of the spatial distribution of this study inventory in emissions from power plants (a–b), industry (c–d): this study power plants (a), Zhou et al. 
(2017) power plants (b), this study industry (c) and Zhou et al. (2017) industry (d). 
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emission factors used in this study were generally smaller than those 
used by Zhou et al. (2017). This was reflected in the grid in the southern 
Jiangsu region, where industrial enterprises gathered and had large 
emissions. The lag of Zhou et al. (2017) for multiple emission factors is 
the main reason for the difference in the results. 

3.3. Spatial distribution of NOx emissions 

With its large population, dense economy, and industry, South 
Jiangsu has higher NOx emissions than Central Jiangsu and North 
Jiangsu (Table S4). Nanjing, Suzhou, and Wuxi accounted for 55% of the 
province’s industrial GDP, and 33%, 60%, and 48% of the total emis
sions from power plants, ferrous metal manufacturing, and industrial 
boilers, respectively. The annual NOx emissions based on the point 
sources are shown in Fig. 5. Industrial NOx point sources had the largest 
emissions and were the most intensive emission sources in southern 
Jiangsu. Most of the large emission point sources were gathered in the 
Yangtze River Basin with obvious aggregation effects. 

The spatial distribution of different industries varied significantly 
(Fig. 5). Emissions from power plants were mostly concentrated in 
southern Jiangsu, and point sources were mostly concentrated near the 
urban areas of the developed regions. The ferrous metal manufacturing 
industry showed a higher concentration of emissions, primarily from 

large steel enterprises, in Suzhou and Wuxi. Large enterprises with 
emissions greater than 3 Gg in both cities discharged 23 Gg in total, 
accounting for 35.6% of the emissions from the ferrous metal 
manufacturing industry in this province. Large steel plants gathered 
near the estuary of the Yangtze River for shipping and discharge. 
Emissions from non-metallic mineral manufacturing were relatively 
dispersed, with few large emission point sources distributed in southeast 
Jiangsu. The rest of the small- and medium-sized point source enter
prises were mainly lime enterprises and brick factories. The largest 
emission sources in the chemical manufacturing industry were coal 
processing enterprises, with emissions concentrated in Xuzhou. Emis
sions from industrial boilers are more dispersed, and most of them are 
concentrated in small point sources distributed in the most concentrated 
area in Jiangsu Province, which is the southern Jiangsu region. 

3.4. Analysis of concentration changes 

The acceptance criteria for monitoring data based on the HJ 75–2017 
serve as a guarantee for the accuracy of CEMS concentration measure
ments (Table S5) (MEP, 2017b). CEMS data can directly reflect real 
pollutant control technology and the emission levels of different in
dustrial point sources. Therefore, we analyzed NOx emission concen
trations in five industries with high NOx emissions and rich online 

Fig. 5. Spatial distribution of emissions from total industrial sources (a), power plants (b), ferrous metal manufacturing (c), non-metallic mineral manufacturing (d), 
chemical manufacturing (e) and industrial boilers (f) in Jiangsu Province. 
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monitoring data, namely, coal-fired power plants, sintering, pelletizing, 
coking, and cement clinker production (Fig. 6). 

The average NOx concentrations in the power plants were 41.1 mg/ 
m3. Coal-fired boilers in power plants were affected by ultra-low emis
sion reduction, reaching a concentration limit of 50 mg/m3 (Tang et al., 
2019). Small and medium-sized power plants continuously updated 
their nitrogen removal equipment, and NOx concentrations continued to 
decrease in a linear form, with an overall decrease of 16% in monthly 
average concentrations. The emission concentrations of the coking in
dustry decreased by 29% in 2018, with a significant decrease in May and 
December. Stricter policies and capacity of the coking industry pro
moted the installation of NOx control equipment in coking enterprises 
(Bo et al., 2021). However, the sintering industry showed little change in 
emissions levels, with an average annual concentration of 158.1 mg/m3. 
The potential emission reduction of NOx was large, and the ultra-low 
emission standard of the steel industry was particularly strict 
(reducing the NOx limit by 83.3%), which still required substantial 
progress (at the end of 2018, NOx stack concentrations were on average 
20%–78% higher than the ultra-low emission standard). The NOx 
emission concentration of the pelletizing industry was low and fluctu
ated. The average annual NOx concentration produced by the cement 
clinker was 160.9 mg/m3. The monthly NOx concentration showed an 
overall linear decline in the form of a 51.6% decrease in the monthly 
average concentration in 2018 and a massive decrease in emission 
concentration. The cement clinker production industry responded 
positively to an ultralow emission policy. The NOx emission factor, as 
observed by CEMS, is smaller than that of the lagged traditional method, 
and this could be partly attributed to the contribution of emission 
reduction equipment installation, Bo et al. (2021) and Tang et al. (2019) 
also reached similar conclusions. Specifically, the NOx emission factors 
for coal-fired power plants, ironmaking, and cement are only 9.3%, 
49.5%, and 18.6% of those for traditional methods. China has achieved a 
high installation rate, exemplified by the significant increase in the 
adoption of control technologies in the power plant industry from 13% 
in 2010 to 98.40% in 2017 (Tang et al., 2019). 

3.5. Time variation analysis of emissions 

3.5.1. Monthly variation in emissions 
The total emissions of all industries were higher in summer, reaching 

a peak of 17 Gg in July and low in winter, with only 11 Gg in February 
(Fig. 7). Power plants and ferrous metal manufacturing have high 
emissions throughout the year (>60%). 

The monthly emissions from different industries also exhibited 
different changes (Fig. 8). High emissions from power plants occurred in 
the summer, with June, July, and August accounting for 30% of the 
annual emissions (Fig. 8a). High electricity consumption behavior, such 
as residential cooling in the summer, was responsible for this high 
emission. Large- and medium-sized power plants consistently accounted 
for more than 80% of the emissions of the power plant industry, and the 
monthly variation in their emissions was consistent with the trend in 

activity levels. The ferrous metal manufacturing industry’s emissions 
were concentrated in the second half of the year. In contrast, pig iron 
production in Jiangsu Province was relatively low during this period, 
with changes in the emission factors that dominated the change in 
emissions. Large- and medium-sized enterprises have consistently 
accounted for over 90% of the emissions from the steel industry, and 
their monthly emission share has increased over time. 

Emissions from the non-metallic mineral manufacturing industry 
continued to decline from January to December, with a 36% decrease. 
The leading factor was the change in the emission factors, with the NOx 
emission concentrations of cement clinker production showing an 
annual reduction of 52%. Large and medium-sized enterprises accoun
ted for more than 70% of the emissions. However, they also showed the 
largest reduction in emissions, with an annual reduction in emission 
concentrations of 60%. Northern Jiangsu consistently generated over 
30% of the NOx emissions because of the large number of clustered 
cement plants. The emissions of the chemical manufacturing industry 
decreased by 30% from a monthly average of 0.3 Gg in the Januar
y–April period at the beginning of the year to 0.2 Gg in December, and 
activity level was the main factor controlling the change. Owing to its 
large coke production capacity, northern Jiangsu accounted for more 
than 80% of the emissions. The emissions of industrial boilers were 
relatively high in spring and summer and were evenly distributed. Large, 
medium, and small enterprises accounted for 27.76%, 38.10%, and 
34.14% of annual emissions, respectively. 

In general, the monthly changes in emissions from power plants, 
ferrous metal manufacturing, and non-metallic mineral manufacturing 
were dominated by emission factors. The emission reduction of these 
industries should focus on large- and medium-sized enterprises, improve 
the installation rate and start-up utilization rate of denitration equip
ment, and pay particular attention to the South Jiangsu region with 
dense heavy industries. The monthly changes in emissions in the 
chemical manufacturing and industrial boiler industries were domi
nated by activity levels, and the reduction of emissions from these in
dustries should be focused on capacity reduction and the elimination of 
small- and medium-sized equipment. 

Fig. 6. Monthly trends in NOx emission concentrations for the sintering, coking, cement (a) and power plant, pelletizing (b) industries based on CEMS data.  

Fig. 7. Monthly distribution of NOx emissions from industrial sources 
by industry. 
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3.5.2. Variation of daily emissions 
In terms of the daily variation of total emissions, January and 

February were relatively low, with daily emissions below 450 tons/day, 
and gradually rose from the second half of March, reaching a peak of 
approximately 600 tons/day in early June due to the influence of power 
plants and industrial boilers. Emissions were significantly higher in the 

second half of the year because of the high emissions from ferrous metal 
manufacturing (Fig. 9a). 

Emissions from power plants varied widely, with emissions 
increasing in late March. High emissions occurred in early June when 
emissions exceeded 200 tons per day. Emissions from ferrous metal 
manufacturing varied less, gradually rising from late April and reaching 

Fig. 8. Monthly variation of emissions by region, firm size, and activity levels in industrial sectors (a–e): power plants, ferrous metal manufacturing, non-metallic 
mineral manufacturing, chemical manufacturing, industrial boilers. 
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a maximum of around 200 tons per day in late September, with emis
sions in the second half of the year being significantly higher than in the 
first half (Fig. 9c). The variation in emissions from non-metallic mineral 
manufacturing showed the opposite pattern. High emissions of 
approximately 80 tons per day occurred from January to mid-February, 
gradually decreasing from late May, with emissions significantly lower 
in the second half of the year (Fig. 9d). Chemical manufacturing had 
higher emissions before capacity reduction, reaching 10 tons per day in 
mid-April, with low emissions in early May (Fig. 9e). The monthly 
variation in emissions from industrial boilers did not differ as annual 
average emission factors were used (Fig. 9f). 

3.5.3. Hourly variation of emissions 
Statistics were obtained for the proportion of 24-h NOx emissions 

from different industries (Fig. 10). The cumulative emissions of the 
power plants fluctuated by more than 5.9% throughout the year for 24- 
h. The proportion of emissions remained high from 12:00, with the 
hourly emissions exceeding 2.3 Gg. In contrast, the emissions were 
lower in the early morning hours, similar to the characteristics of elec
tricity consumption. The 24-h emissions from the ferrous metal 
manufacturing industry fluctuated slightly, at only 3.2%. Higher at 
night, with the highest value at 3:00 at 2.7 Gg (4.23%). Production work 
is mainly carried out at night in this industry. NOx emissions might be 
more severe under the influence of the lower boundary layer, requiring 
timely emission reduction treatment and supervision. The emissions of 
non-metallic mineral manufacturing was slightly lower in the early 
morning hours, and the highest emissions occurred at 10:00. The 24-h 
emissions of the chemical industry fluctuated significantly. Because of 
the utilization of annual average NOx emission factors, the 24-h emis
sions of industrial boilers were distributed evenly. This inventory of NOx 

emissions on an hourly scale can provide basic data and guidance for 
fine control of pollutants in various industries. 

3.6. Model validation 

The simulation results of the inventories reflected the temporal 
variation of pollutant concentrations well, and the average correlation 
coefficient R between the observations and inventories exceeded 0.6. 
The NMB was used to evaluate the model performance (Zhang et al., 
2006), and the results for January and July are shown in Fig. 11, with 
most regions meeting the performance target (NMB ≤ ±30%). The in
ventory of this study has greatly optimized the simulation results of NO2, 
with an average NMB of − 7.1% and − 10.7% for January and July, 
respectively, as opposed to 30.8% and 14.4% in the MEIC. In months and 
regions with severe pollution, the simulation results were often good. 
The degree of optimization of the simulation results in January was 
higher, and the NMB values in southern Jiangsu were relatively low. The 
average NMB values for NO2 in southern Jiangsu were only 2.0% and 
− 14.3% in January and July, respectively. As the NOx emissions from 
industrial sources in Jiangsu Province estimated by MEIC were 968 Gg, 
whereas the emissions in this study were 176 Gg, only 18.2% of that, 
MEIC may have overestimated the emissions from industrial sources. 
This result partly confirmed that air quality simulations at the regional 
scale would be greatly improved when detailed information on indi
vidual sources could be incorporated into the emission inventory. 
Remarkably, this inventory improved the correlation between NO2 
simulation results and monitoring concentrations in July, with an 
average determination coefficient R2 of 0.8, while the MEIC was only 
0.6. However, the NO2 simulation results of this study for North Jiangsu 
in July were slightly poor, which might be because border areas were 
more vulnerable to the impact of emissions from areas outside the re
gion, resulting in a large deviation in the simulation results. In addition, 
while this inventory significantly improved the simulation results of 
NO2, the simulation of PM2.5, has not been greatly improved, possibly 
because of the lack of improved emission inventories for other pollutants 
constituting PM2.5. 

The comparison of simulated and observed concentrations of NO2 at 
regional stations in Jiangsu Province in January and July 2018 is shown 
in Fig. 12. The NO2 simulation results were better in terms of spatial 
distribution using the inventory of this study, which could clearly 
simulate the emission differences and distribution of large emission 
sources in southern Jiangsu. Simultaneously, the overall NO2 simulation 
results of this study had lower concentrations, which were closer to the 
actual monitoring concentrations. In this study, emissions from power 
plants and industrial plants were accurately estimated and allocated to 
avoid overestimation of emissions in downtown areas. The refined 

Fig. 9. Variation of daily NOx emissions (tones) from different industrial sectors (a–f): total emissions, power plants, ferrous metal manufacturing, non-metallic 
mineral manufacturing, chemicals, industrial boilers. 

Fig. 10. Variation of the share of 24-h emissions from different industries.  
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industrial source inventory of this study has substantially improved the 
spatial distribution of NO2 emissions in advanced economic and indus
trial intensive areas, such as southern Jiangsu, resulting in a greater 
optimization of the air quality simulation. 

4. Conclusion 

The bottom-up emissions inventory in China still needs to be 
improved in terms of temporal and spatial refinement. Therefore, we 
established a refined emission factor database for key industrial sources 
based on CEMS data to optimize the traditional bottom-up emission 
inventory construction method for emission factors. The NOx emission 
inventory of key industrial sources in Jiangsu Province, based on CEMS 
data from 2018, was also established. The emissions from the power 
plants, industrial boiler, ferrous metal manufacturing, non-metallic 
mineral manufacturing and chemical manufacturing calculated by the 
traditional emission factor method were 680%, 966%, 184%, 498% and 
279%, respectively of inventory based on CEMS method in this study. 
The CEMS data greatly optimized the emission factors of industrial 
sources and provided a new approach for the construction of an indus
trial source emission inventory. 

This study had a good correlation with the refined emission in
ventory of the Yangtze River Delta in Jiangsu Province of Zhou et al. 

(2017) at 0.25◦ × 0.25◦, with correlation coefficients of 0.52 and 0.59 
for the power plants and industrial sectors, respectively. The utilization 
of many point sources leads to a more accurate spatial distribution of the 
inventory of industrial sources. The CEMS data reflect the change in the 
emission concentration in industries. The concentration in power plants 
and the cement industry continued to decline, while the emission con
centration in the sintering industry was relatively high with little 
change, which would be the focus of ultra-low emissions in the steel 
industry in the future. 

The total emissions of industries were higher in summer and lower in 
winter. High emissions from power plants occurred during the peak 
electricity consumption months of the summer. Emissions from ferrous 
metal manufacturing were controlled by emission factors, with emis
sions being significantly higher in the second half of the year. Analysis of 
hourly emissions showed that the 24-h emissions of power plants fluc
tuated the most, with high emissions occurring in the afternoon and 
evening. On the other hand, the emissions from ferrous metal 
manufacturing had less fluctuation, at only 3.2%. The high value of its 
emissions mostly occurred at night, which tended to cause more severe 
air pollution. The simulated results for NO2 in this study inventory were 
more optimized, with an average NMB of − 7.1% and − 10.7% for 
January and July, respectively, which is only 22.0% and 74.6% of the 
MEIC. The NO2 simulation using the inventory in this study could clearly 

Fig. 11. January (a) and July (b) in 2018 simulated results of MEIC and this study inventory for NO2 and PM2.5 averaged at NMB in different areas.  

Fig. 12. Comparison of simulated and measured concentrations of NO2 for January and July 2018 based on MEIC and this study inventory, (a) January NO2, (b) July 
NO2. The dots represent the measured concentrations. 
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reflect the emission differences and distribution of large emission 
sources in the southern Jiangsu region. 

Our study has several limitations. First, hourly emissions could only 
be estimated using the industry average for companies lacking CEMS 
data because of incomplete CEMS installations in small companies. 
However, the proportion of these companies was relatively small, at 
only 15% of the activity levels, which may not significantly impact the 
results of this study. Second, for industries with low CEMS equipment 
installation rates, such as lime, brick, and tile, although there have been 
improvements compared to traditional methods, the uncertainty sur
rounding their emissions remains relatively high. Third, CEMS may not 
capture data on additional ground emissions, such as fugitive emissions, 
accidental releases. There are additional challenges associated with 
enhancing the accuracy of pollutant concentration measurements, pri
marily due to the unavailability of error data in CEMS measurements. 
However, we utilized various methods, including the downward distri
bution of total activity levels and theoretical smoke volume, to minimize 
the impact of these factors. Bo et al. (2021) and Tang et al. (2019) both 
found that the significant disparities in emissions are more likely to be 
attributed to ultra-low emissions. Despite these limitations, given the 
high installation rate of CEMS, we believe that our data represents the 
most reliable information available. In order to address these limita
tions, we plan to further obtain emission factors for small factories and 
industries with low CEMS installation rates through technical processing 
or on-site measuring. Furthermore, we will implement more quality 
assurance measures to minimize the impact of uncontrollable data 
factors. 
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