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• MDA8 O3 in the warm season of 2019 
and 2021 show different variations in 
eastern China and the rest of China. 

• Changes in anthropogenic emissions 
resulted in an ozone decrease by 7 μg/ 
m3 in EC and an ozone increase by 2 μg/ 
m3 in ROC. 

• Changes in the meteorological condi
tions contributed to an ozone decrease 
by 7 μg/m3 in EC and 7 μg/m3 in ROC. 

• In addition to eastern China, reductions 
in ozone precursor emissions from the 
others regions in China are urgently 
needed.  
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A B S T R A C T   

Ozone pollution is one of the most severe air quality issues in China that poses a serious threat to human health 
and ecosystems. During 2019–2021, the maximum daily 8-h average ozone concentrations in eastern China 
(110–122.5◦E, 26–42◦N) and the rest of China (ROC) show different decreasing patterns, with ozone concen
trations in eastern China decreasing by 14.9 μg/m3, which is much larger than 4.8 μg/m3 in ROC. Here, based on 
two independent methods, the atmospheric chemical transport model (GEOS-Chem) simulations and the ma
chine learning (ML) model (LightGBM) predictions, the reasons for the differences in ozone changes between 
eastern China and ROC during the warm season (April to September) are investigated. According to the GEOS- 
Chem (LightGBM) results, changes in the meteorological conditions contributed to an ozone decrease by 7.3 (6.8) 
μg/m3 in eastern China due to decreased chemical production and an ozone decrease by 6.8 (7.0) μg/m3 in ROC 
attributed to the weakened horizontal and vertical advection. With the influence of meteorological factors 
excluded, the observations show that changes in anthropogenic emissions resulted in an ozone decrease by 7.6 
(8.1) μg/m3 in eastern China and an ozone increase by 2.0 (2.2) μg/m3 in ROC, which is primarily induced by the 
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changes in NOx emissions. The surface measurements and satellite retrievals also indicate that the reduction in 
NOx emissions in ROC is less efficient than that in the more developed eastern China, leading to contrasting 
changes in ozone concentrations between eastern China and ROC during 2019–2021. Our results highlight the 
critical need to reduce ozone precursor emissions in the rest regions of China apart from eastern China.   

1. Introduction 

Air pollution is one of the urgent environmental issues in China. 
Although substantial improvements in the aerosol pollution issue have 
been reported due to a series of clean air actions (Wang et al., 2020; Li 
et al., 2021; Gao et al., 2022; C. Liu et al., 2023a), ozone pollution re
mains a serious concern in China, with increasing trends in ozone con
centrations observed during 2013–2019 (Lu et al., 2018; Lu et al., 2020; 
Li et al., 2020; P. Wang et al., 2022c). After a sustained rise until 2019, 
the surface ozone concentration in China show a decreasing trend during 
2019–2021 (Fig. S1). The occurrence of ozone pollution has been 
spatially concentrated in eastern China, particularly in the North China 
Plain and the Yangtze River Delta (T. Wang et al., 2022a), and prevalent 
from April to September each year. Ozone pollution is primarily influ
enced by precursor emissions and meteorological conditions, which 
have complex, non-linear relationships with ozone concentrations. 

Ozone in the troposphere is mainly produced by photochemical re
actions of nitrogen oxides (NOx, including NO and NO2) and volatile 
organic compounds (VOCs) in the presence of sunlight. Usually changes 
in ozone concentrations are a result of a complex interplay of multiple 
factors, with anthropogenic emissions of precursors being particularly 
significant. For example, the reductions in NO2 due to reduced human 
activities during the pandemic led to a decrease in free tropospheric 
ozone concentrations throughout the Northern Hemisphere from 2020 
to 2021 (Ziemke et al., 2022). Liu and Wang (2020) also discovered that 
the change in NOx emissions from 2013 to 2017 was the primary cause 
driving the change in the surface ozone mixing ratio in China when 
considering the concurrent changes in NOx and VOCs emissions based on 
regional model simulations. Using the global chemical transport model 
GEOS-Chem, Li et al. (2019) also reported the important role of NOx in 
modulating ozone trends in China. These studies revealed the significant 
role of NOx in ozone pollution in China. In addition to NOx, as another 
important precursor of ozone, VOCs also play an essential role in ozone 
production (Liu and Wang, 2020; Wang et al., 2017). 

Meteorological conditions, such as temperature, relative humidity, 
cloudiness, solar radiation, and winds, are regarded as external factors 
in influencing the tropospheric ozone distribution (Gong and Liao, 2019; 
Li et al., 2023; Mao et al., 2020; Wang et al., 2021a, 2021b; Y. Zhang 
et al., 2022). They can have a significant impact on the levels of ozone 
and its precursors in the atmosphere through various mechanisms. One 
way is by changing the emissions of natural precursors and their 
transport in the atmosphere (Lu et al., 2019). Additionally, meteoro
logical factors can affect the chemical reactions and deposition processes 
that are key to the production and loss rates of ozone (Ito et al., 2007). 
Overall, meteorological factors play a crucial role in the complex at
mospheric ozone chemistry and can have significant implications for 
ozone air quality. 

The impacts of anthropogenic emissions and meteorological factors 
on ozone concentrations exhibit temporal and spatial variability. Ac
cording to Li et al. (2020), in general, anthropogenic emissions have a 
greater impact on variations in surface ozone concentrations than 
meteorological factors do in the North China Plain during 2013–2019, 
similar to the finding for the time period of 1986–2006 in Yang et al. 
(2014). Dang et al. (2021) found a high dependence of extreme ozone 
pollution events on favorable weather conditions. Yin et al. (2021) 
suggested that the significant decline in summertime surface ozone 
levels over eastern China in 2020 can be attributed to both the reduction 
in anthropogenic emissions and changes in meteorological factors. 
Therefore, it is crucial to examine the dominant factors driving ozone 

changes, considering the temporal and spatial variations in anthropo
genic and meteorological contributions, in order to develop effective 
guidance for mitigating ozone pollution. 

Machine learning (ML) can be used to make a prediction on con
centrations of air pollutants such as aerosols and ozone due to its better 
ability than traditional statistical methods to deal with nonlinear and 
complex relationships among variables (H. Li et al., 2022b; Kang et al., 
2021; Chen et al., 2023). Due to their high computational efficiency and 
accuracy, many studies have applied ML methods for ozone estimation. 
Based on a cluster-enhanced ensemble ML method, Liu et al. (2022) 
constructed a monthly ground-level ozone dataset with 0.5-degree 
horizontal resolution covering the global land areas for 2003–2019 by 
using multiple data sources including data from satellites, chemical 
transport model outputs, atmospheric reanalysis, emissions, and 
ground-based observations. Cordero et al. (2022) used ML to predict 
ozone concentrations under unconstrained conditions during the 2020 
pandemic and compared the predicted ozone concentrations with ob
servations to determine pollutant reductions following the imple
mentation of restrictions. Li et al. (2023) quantified the impact of future 
climate change on ozone pollution in Asia by predicting near-surface 
ozone concentrations for 2020–2100 using the ML method and multi- 
source data, and the ML model exhibited a good predictive capability 
of ozone. These studies have demonstrated the feasibility of ML methods 
to study ozone concentration distributions and changes. 

One scientific focus of this study is to explore the causes of the ozone 
decline in China during 2019–2021 after the sustained rise since 2013 
(Fig. S1). This study also reveals different spatial patterns of near-surface 
ozone concentration changes during the warm season (April to 
September) in China between 2019 and 2021, mainly due to policy- 
driven changes in anthropogenic emissions as well as changes in mete
orological conditions, based on two independent methods. In this study, 
the ozone anomaly is not considered for 2020, when the anthropogenic 
emissions are largely influenced by Coronavirus Disease 2019 (COVID- 
19). The potential causes of different ozone changes in eastern China 
and other regions of China are investigated based on atmospheric 
chemistry model simulations and an observation-based ML approach, 
which has implications for future ozone reductions in various regions of 
China. 

2. Data and methods 

2.1. Surface observations and satellite retrievals 

Hourly surface ozone and NO2 concentrations (μg/m3) at 2024 
monitoring stations for April–September in 2019 and 2021 are obtained 
from the China Ministry of Ecology and Environment (MEE) and are 
unified to the standard conditions (273 K and 1013 hPa). Data from 
observations at monitoring sites within the same cities are averaged to 
represent concentrations at the city levels. In this study, the maximum 
daily 8-h average (MDA8) ozone concentration is calculated as the pri
mary ozone air quality indicator. 

Given the short lifetime of NOx and the high NO2/NOx ratio in the 
boundary layer, NO2 is treated as a representative indicator of NOx 
(Duncan et al., 2010; Ren et al., 2022). Tropospheric NO2 vertical col
umns used in this study are adopted from the Aura OMI Level-3 NO2 
products version 003 (OMNO2d) with a grid resolution of 0.25◦ × 0.25◦. 
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2.2. Reanalysis meteorological data 

Meteorological fields for 2015–2019 and 2021 are from the second 
edition of Modern Era Retrospective-analysis for Research and Appli
cation (MERRA-2) produced by NASA's Global Modeling and Assimila
tion Office (GMAO) (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ 
). The MERRA-2 reanalysis data used in this study have a spatial reso
lution of 0.5◦ latitude × 0.625◦ longitude. Meteorological parameters 
include 2-m maximum air temperature (T2m), surface relative humidity 
(RH), downward shortwave flux at the surface (SWGDN), total cloud 
cover (TCC), planetary boundary layer height (PBLH), sea level pressure 
(SLP), vertical pressure velocity (OMEGA), and wind fields at 850 hPa 
(U850, V850) and 10 m (U10M, V10M). 

2.3. GEOS-Chem model simulations 

Fig. 1 illustrates the tools and procedure for analyzing the different 
spatial patterns of changes in near-surface ozone over China between 
2019 and 2021. In this study, the tropospheric ozone is simulated using 
version 13.4.1 of GEOS-Chem (https://geos-chem.seas.harvard.edu/), a 
global three-dimensional chemical transport model (CTM) employing 
fully coupled ozone-NOx-hydrocarbon-aerosol chemical mechanisms 
(Mao et al., 2013). The meteorological fields that drive the model are 
derived from MERRA-2 meteorological data. Previous studies have re
ported that GEOS-Chem can well capture the seasonal and interannual 
variations of ozone in China (Li et al., 2019; M. Li et al., 2022a). 

The simulations are performed from October 2018 to September 
2019 and October 2020 to September 2021, with the first six months 
used for model spin-up. GEOS-Chem is initially run with a global hori
zontal resolution of 2◦ latitude × 2.5◦ longitude, then a set of nested 
model simulations with a horizontal resolution of 0.5◦ latitude × 0.625◦

longitude over East Asia (70◦E–140◦E, 15◦N–55◦N) are conducted. Re
sults from the nested simulations for April–September in 2019 and 2021 
are used for analysis. The anthropogenic emissions in China are from the 
Multi-resolution Emission Inventory for China (MEIC) (Zheng et al., 
2018) and those in other regions of the globe use the Community 
Emissions Data System inventory (McDuffie et al., 2020). During the 

simulations, anthropogenic emissions of organic carbon (OC), black 
carbon (BC), carbon monoxide (CO), sulfur dioxide (SO2), NOx, 
ammonia (NH3), and VOCs, are fixed at the year 2019 levels to remove 
the effects of changes in emissions on ozone variations, while biogenic 
emissions are online predicted using MEGAN v2.1 (Guenther et al., 
2012). Fig. S2 provides a comparison of the modeled ozone concentra
tions with the observations and the model can simulate spatial distri
bution of ozone concentrations in China with relative low biases. 

Since the emissions are fixed, the simulated ozone difference be
tween 2019 (GC2019) and 2021 (GC2021) provides a means to quantify 
ozone change driven by changes in meteorological conditions between 
2019 and 2021 (GC_Met), estimated as: 

GC Met = GC2021 − GC2019 (1) 

Then the role of anthropogenic emission changes from the observa
tional perspective (GC_Emis) can be estimated as: 

GC Emis = (Obs2021 − Obs2019) − (GC2021 − GC2019) (2)  

where Obs2019 and Obs2021 represent ozone observations in 2019 and 
2021, respectively. 

In addition, an integrated process rate (IPR) analysis is used to 
quantify the relative contributions of individual processes to ozone 
changes (Li et al., 2012). Major processes including net chemical pro
duction, horizontal advection, vertical advection, diffusion and dry 
deposition are considered in the IPR analysis output by the GEOS-Chem 
model. 

2.4. Machine learning model predictions 

In addition to observations and GEOS-Chem model simulations, the 
LightGBM (Light Gradient Boosting Machine) model is also employed to 
emulate and predict the changes in surface MDA8 ozone concentrations 
in China. As one of the ML models, LightGBM is a gradient enhancement 
technique with a weak learner weight ensemble structure (Ju et al., 
2019). Compared to other machine learning algorithms, LightGBM 
shows faster training time, lower memory usage, efficient handling of 
high-dimensional features, high parallelization capability, and lower 

Fig. 1. The schematic illustration of tools (CTM and ML) and procedure (experimental design, training/evaluation, and prediction) for analyzing the differences in 
near-surface ozone concentration changes in China between 2019 and 2021. MET: meteorology; EMIS: emissions; OBS: observation; LAT: latitude; LONG: longitude; 
DOY: day of the year (see other definitions in Table S1). 
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hyper-parameter tuning requirements. It has demonstrated excellent 
performance in previous studies in the prediction of atmospheric pol
lutants (L. Liu et al., 2023b; X. Wang et al., 2022b; Z. Zhang et al., 2022; 
Zhong et al., 2021). In this study, a total of 16 features over 2015–2019 
are used in the LightGBM to estimate MDA8 ozone concentrations, 
including seven meteorological variables, station and satellite data for 
NO2, anthropogenic emissions of ozone precursors, as well as spatial and 
temporal information (see Table S1 for details). All grid data are mapped 
to the stations by proximity interpolation. Days with missing or invalid 
data for each geographic location are excluded from the LightGBM 
training. 

Firstly, input datasets in 2015–2018 are used for model training and 
those in 2019 are used for model testing (ML_ALL2019). Hyper
parameters applied in LightGBM include n_estimators (number of deci
sion trees in the forest), num_leaves (number of leaf nodes per decision 
tree), and max_depth (maximum depth of each decision tree). In con
structing the hyperparameter rectification process for optimizing 
LightGBM, the K-fold cross-validation (CV) technique is used to rate the 
model performance. K-fold CV randomly divides the entire training data 
into K subsets (K = 10 in this study). In each round of K-fold CV, K-1 
subsets are used to fit the model and the remaining subsets are used for 
validation. For n_estimators, num_leaves, and max_depth, the optimal 
hyperparameters of the model are 500, 120, and 14, respectively. 
Several statistical metrics, including coefficient of determination (R2), 
mean absolute error (MAE), and root mean square error (RMSE), are 
calculated to measure the performance of the LightGBM model. 

With the trained LightGBM, the impacts of changing meteorological 
conditions and anthropogenic emissions between 2019 and 2021 on 
ozone concentrations are assessed. In the parallel prediction of LG2019, 
all variables are fixed at 2019 levels but meteorological parameters are 
replaced by their 2021 values (LG2021), in order to identify the impacts 
from changes in meteorological conditions on the ozone differences 
between 2019 and 2021. To identify the influence of changes in NOx, 
ozone concentrations are predicted in parallel by changing anthropo
genic emissions of NOx in China as well as the site and satellite NO2 to 
the 2021 levels in LightGBM (LG_NOx2021), while meteorological pa
rameters and other variables are kept at 2019 levels. Note that the 
anthropogenic emissions of NOx in 2021 are estimated by scaling the 
MEIC emissions in 2019 with the ratio of satellite NO2 in 2021 to 2019. 

The role of changes in meteorological conditions (LG_Met) from the 
ML perspective can be estimated as: 

LG Met = LG 2021 − LG2019 (3) 

and that from changes in anthropogenic emissions (LG_Emis) can be 
estimated as: 

LG Emis = (Obs2021 − Obs2019) − (LG2021 − LG2019) (4) 

The LightGBM can also quantify the impact from changes in NOx, 
estimated as: 

LG NOx = LG NOx2021 − LG2019 (5)  

2.5. Machine learning model performance and variable importance 

Fig. 2a and b present the density scatterplots of the fitting perfor
mance of the ML model. The LightGBM predicted ozone concentrations 
in April–September of 2019 over China are in good agreement with the 
observational data. The overall R2 between the predicted and observed 
MDA8 ozone concentrations is 0.61 and the value increases to 0.80 after 
averaging the ozone concentrations during April–September. The 
LightGBM can also reproduce the observed characteristics of ozone 
distribution in China in the warm season of 2021 (Fig. S3). 

Fig. 2c shows the Gini importance of each feature and the correlation 
between the feature and the target ozone concentrations. The Gini 
importance gauges how much a feature contributes to reducing impurity 
when making decisions in decision trees or ensemble models. It 

facilitates the understanding of the importance of the independent 
predictors in the trained LightGBM model in terms of predicting the 
target variable. Among all the input predictors, RH and Tmax are the 
top-two most influential variables for the model prediction of near- 
surface ozone in China, with importance scores of 32 % and 15 %, 
respectively. RH is negatively correlated with ozone concentrations, 

Fig. 2. Density scatterplot of observed vs. predicted MDA8 ozone concentra
tions, where (a) ML model prediction power in 2019 (N = 251,280) at the daily 
scale across China and (b) model prediction power for April–September 2019 
(N = 1498, after removing sites that have missing observation) on average 
across China. The color bar in (a) and (b) represents the density of data dis
tribution. The gray and red solid line is the 1:1 line and linear regression line, 
respectively. Statistical metrics including root mean square error (RMSE), mean 
absolute error (MAE), and coefficient of determination (R2) are noted at the top 
left of each panel. (c) Importance scores (y-axis on the left) of the variables 
(meteorological factors, emission inventories, and observed NO2) for the ML 
model and correlation coefficients (y-axis on the right) between observed ozone 
concentrations and the individual variables (orange dots represent positive 
correlation and blue dots represents negative correlation). 
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while ozone changes are in line with Tmax variation. Previous studies 
have also highlighted the primary importance of RH (e.g., Li et al., 2023; 
Han et al., 2020; Qian et al., 2022; Yu, 2019) in the estimation of ozone. 
Other meteorological parameters also contribute to ozone estimation 
with importance scores <10 %. Note that, the importance scores of in
dividual features quantified in this study reflect their overall importance 
for all stations in China and are less representative of individual sites or 
specific regions. 

3. Results 

3.1. Changes in surface ozone concentrations in China between 2019 and 
2021 

Fig. 3 shows the warm season (April to September) average MDA8 
ozone concentrations in 2019 and 2021 from observations. According to 
the data from MEE, high ozone levels are concentrated in eastern China 
(26◦–42◦N, 110◦–122.5◦E), including the Beijing-Tianjin-Hebei (BTH), 
Yangtze River Delta (YRD) and Fenwei Plain (FWP) city clusters, which 
are typical ozone pollution regions in China. Compared to 2019, ozone 
pollution in eastern China was significantly alleviated in 2021. 

In eastern China, ozone concentration in the warm season was low
ered by 14.9 μg/m3 in 2021, compared to 2019, and 93 % of sites in this 
region had decreases in ozone concentrations (Table 1). However, in the 
rest of China (ROC), ozone concentrations only decreased by 4.8 μg/m3 

from 2019 to 2021, about one-third of the ozone reduction in eastern 
China, and even 29 % of sites show increases in ozone concentrations in 
ROC. It indicates that the ozone reduction is less significant in ROC than 
the more developed eastern China between 2019 and 2021. 

This different spatial pattern of ozone changes between eastern 
China and ROC can also be observed in the longer-term observations 
during 2015–2021 (Fig. S4). During 2015–2019, all sub-regions in China 
showed increasing trends of ozone concentrations during the warm 
season, including northwestern China, central China, southern China, 
northeastern China and eastern China. However, between 2019 and 
2021, only eastern China showed a substantial ozone decrease, and most 
of the other sub-regions showed ozone increases (northwestern China, 
southern China, and northeastern China). Note that ozone concentra
tions decreased in 2020 compared to 2019 in all sub-regions of China, 
primarily due to the abrupt emission reductions related to COVID-19 
and shift in meteorological conditions that favored pollution disper
sion and deposition (Xiao et al., 2022; Ren et al., 2022; Yang et al., 
2022). 

3.2. Meteorological contribution to ozone changes 

Meteorological conditions play a non-negligible role in the variation 
of ozone concentrations. Here, the reason for the different patterns in 
ozone changes between eastern China and ROC is firstly explored by 
analyzing the variation of meteorological factors. Previous studies have 
concluded that temperature, solar radiation, relative humidity, and 
cloudiness have strong influences on ozone pollution in China. Fig. 4 
shows spatial differences in Tmax, SWGDN, RH, and TCC over 
April–September between 2019 and 2021 from the MERRA-2 reanalysis. 
In eastern China, Tmax decreased by 0.66 ◦C, SWGDN decreased by 6.6 
W/m2, RH increased by 5 %, and total cloudiness increased by 5 % in 
2021 compared to 2019, while the changes in these meteorological 
factors are less significant in central and western China. Overall mete
orological conditions in eastern China are more unfavorable for ozone 
production than in ROC. 

Fig. 5 presents the differences in warm season mean MDA8 ozone 
concentrations between 2019 and 2021 driven by changes in meteoro
logical conditions, as predicted by the GEOS-Chem and LightGBM 
model. With fixed anthropogenic emissions, GEOS-Chem reveals a 
suppressive effect of meteorological factors on ozone concentrations 
across China (Fig. 5a). The changes in meteorological conditions resul
ted in an overall decrease of ozone concentrations by 7.3 μg/m3 in 
eastern China and 6.8 μg/m3 in ROC (summarized in Fig. 6). It suggests 
that the changes in meteorological conditions contributed to about half 
of the observed ozone decrease (14.9 μg/m3) between 2019 and 2021 in 
eastern China. LightGBM also shows decreases in ozone concentrations 
across China due to the variations in meteorological factors between 

Fig. 3. Spatial distribution of the observed maximum daily 8-h average 
(MDA8) ozone concentrations (μg/m3) in the warm season (April to September) 
over China in (a) 2019 and (b) 2021 and (c) their differences (2021–2019). The 
boxed region in (c) represents eastern China (26–42◦N, 110–122.5◦E). 

Table 1 
Statistics of the observational sites with warm season (April–September) mean 
maximum daily 8-hour average (MDA8) ozone concentrations increasing (≥0) 
or decreasing (<0) trends between 2019 and 2021 over eastern China (26–42◦N, 
110–122.5◦E) and the rest of China. Number refers to the number of sites with 
MDA8 ozone concentrations increasing or decreasing and ratio refers to the ratio 
of the number of sites with increasing or decreasing trends to the total site 
number. Values after removing the influences of changing meteorology are 
shown in parentheses.  

Region Change Number Ratio 

Eastern China 
≥0 51 (318) 7.3 % (45.4 %) 
<0 650 (383) 92.7 % (54.6 %) 

Rest of China 
≥0 202 (510) 29.2 % (73.7 %) 
<0 490 (182) 70.8 % (26.3 %)  
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2019 and 2021. The ozone decrease predicted by LightGBM is 6.8 μg/m3 

in eastern China and 7.0 μg/m3 in ROC (Fig. 6), similar to the GEOS- 
Chem model results. However, the GEOS-Chem and LightGBM pre
dictions also show different ozone changes driven by changes in mete
orological factors in northeastern China and the Yangtze River Delta 
region. It might be related to the insufficient features in the LightGBM 
model or the model bias in GEOS-Chem model, which warrants further 
investigation. 

To further examine the effects of changes in meteorological condi
tions on ozone production processes, the IPR analysis is conducted to 
determine the changes in ozone due to individual processes based on 
GEOS-Chem simulations (Gong and Liao, 2019). Fig. 7 shows the spatial 
distribution of contributions by each process to ozone mass change 
within the boundary layer. In eastern China, the net chemical produc
tion of ozone coincides with the temperature change and is negative 

from the North China Plain to the Yangtze River Delta and positive over 
the Pearl River Delta (Fig. 7a). Over ROC, decreases in horizontal and 
vertical advection contribute to the ozone decrease in 2021 compared to 
2019 (Fig. 7b and c). The decrease in horizontal advection of ozone is 
related to the anomalous anticyclone over the western North Pacific 
(Fig. 8a), bringing clean marine air to central China. The updraft from 
the surface to about 600 hPa over China (Fig. 8b) accounts for the 
decrease in vertical advection of ozone. The changes in diffusion and dry 
deposition are mainly positive in China (decrease in negative value), 
related to the decrease in ozone concentration. 

3.3. Effects of changes in anthropogenic emissions 

As one of the important precursors of ozone, changes in NOx con
centration are also reflected in the ozone concentrations. Fig. 9 shows 

Fig. 4. Differences in meteorological factors over April–September between 2019 and 2021, including (a) daily maximum 2-m air temperature (Tmax, ◦C), (b) 
surface incoming shortwave flux (SWGDN, W/m2), (c) surface relative humidity (RH, %), and (d) total cloud cover (TCC, %) from the MERRA-2 reanalysis. The boxed 
region represents eastern China (26–42◦N, 110–122.5◦E). 

Fig. 5. Differences in warm season (April to September) mean MDA8 ozone concentrations (μg/m3) between 2019 and 2021 driven by changes in meteorological 
factors predicted by (a) GEOS-Chem model and (b) ML model. The boxed region represents eastern China (26–42◦N, 110–122.5◦E). The gridded data from GEOS- 
Chem simulations are mapped to the sites. 
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the changes in NO2 (as the proxy of NOx) concentrations in China during 
the warm season between 2019 and 2021, in terms of surface observa
tions and OMI satellite data. According to the surface observations, NO2 
concentrations decreased by 4.6 μg/m3 (16.9 %, relative to 2019) in 
eastern China and 2.6 μg/m3 (9.6 %) in ROC in 2021 compared to 2019. 
Satellite data shows that NO2 column decreased by 4.3 × 1014 molec/ 
cm2 (7.2 %) in eastern China but increased slightly in ROC. These sug
gest that the reduction in NOx emission in ROC is less efficient than that 
in eastern China. 

Previous studies have indicated that reducing NOx emissions can 
help control ozone pollution in China. Due to the complex chemistry of 
ozone, a reduction in NOx emissions and a slight increase in VOCs 

emissions may lead to an increase in ozone levels in urban areas, how
ever, the NOx reduction generally assists in controlling total ozone 
production in China (Liu and Wang, 2020). The continued decline in 
NOx levels (Wang et al., 2021a, 2021b) and the shift in ozone chemistry 
sensitivity from VOCs-limited regime to transitional regime in eastern 
China from 2016 to 2019 suggest that further decreases in NOx emis
sions after 2019 can benefit ozone reduction. 

The differences in ozone concentrations between 2019 and 2021 
driven by changes in anthropogenic emissions are estimated based on 
Eq. (2), by subtracting the ozone changes driven by meteorological 
conditions (obtained from the GEOS-Chem simulations) from the total 
ozone changes in observations (Zhai et al., 2019; Li et al., 2020; Weng 
et al., 2022), which are shown in Fig. 10a. We also note that this esti
mation inevitably contains some uncertainties related to the GEOS- 
Chem model. With the meteorological influence excluded, 55 % of 
sites show decreases in ozone concentrations, with regional averaged 
concentration decreasing by 7.6 μg/m3 in eastern China attributed to 
changes in anthropogenic emissions (Fig. 6). Over ROC, sites with in
creases in ozone concentration rise from 29 % to 74 % when only 
considering the changes in anthropogenic emissions, and the regional 
mean change in ozone concentration is also positive (2.0 μg/m3). The 
increase in ozone concentration is also in agreement with the slight in
creases in NOx over ROC observed from satellite (Fig. 9c and d). 

The LightGBM is also used in this study to investigate the effect of 
changes in meteorological conditions (Eq. (3)) and anthropogenic 
emissions (Eq. (4)) on ozone concentrations. In the same way as the 
GEOS-Chem by excluding meteorological effects from the observations, 
the changes in anthropogenic emissions result in a decrease of ozone 
concentration by 8.1 μg/m3 in eastern China and an increase by 2.2 μg/ 
m3 in ROC (Fig. 10b and Fig. 6), consistent with those of GEOS-Chem. 
Due to the significant changes in NOx mentioned previously, the effect 
of changes in NOx on ozone concentrations was also investigated by 
changing the NOx (including satellite data, site observations, and the 
anthropogenic emissions) from 2019 to 2021 levels but fixing the 
meteorological conditions during the ozone prediction (Eq. (5)). The 

Fig. 6. The regional averaged MDA8 ozone changes (unit: μg/m3) in eastern 
China (EC), the rest of China (ROC) and the whole China (CH) during the warm 
season (April to September) between 2019 and 2021 driven by changes in 
meteorological factors and anthropogenic emissions predicted by GEOS-Chem 
model (GC_Met and GC_Emis) and ML model (LG_Met and LG_Emis). 

Fig. 7. Spatial distribution of differences in warm season mean ozone mass change rates (kg/s) among various processes within the boundary layer between 2019 
and 2021, including (a) Chemistry (net chemical production), (b) Transport (horizontal advection), (c) Convection (vertical advection), and (d) Mixing (diffusion and 
dry deposition). 
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Fig. 8. (a) Spatial distribution of differences in warm season mean wind fields (m/s) at 850 hPa and sea level pressure (hPa) between 2019 and 2021 from the 
MERRA-2 reanalysis. (b) Pressure–latitude cross-section of differences in warm season mean vertical pressure velocity (Pa/s) between 2019 and 2021 at latitudes 
ranging from 15◦N to 55◦N (positive value indicates downward airflow). 

Fig. 9. Differences between 2019 and 2021 in warm season mean (a) surface NO2 concentration (μg/m3) from site observation and (c) tropospheric NO2 column 
burden (1015 molec/cm2) from satellite, as well as (b, d) the percentage differences (%). Surface observations are obtained from MEE and satellite retrievals are 
derived from OMI. 
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changes in warm season mean MDA8 ozone concentrations between 
2019 and 2021 driven by changes in NOx predicted by LightGBM 
(Fig. 10c) are similar in spatial distribution with the observations 
(Fig. 3c), showing that ozone decreased in eastern China and increased 
in ROC in general. However, the changes due to changes in NOx pre
dicted by LightGBM are overall larger than those due to changes in 
anthropogenic emissions of all ozone precursors estimated by the 

LightGBM and GEOS-Chem model. This is related to the lack of 
consideration of changes in VOCs in the ML model prediction due to 
insufficient VOCs measurements. 

These results indicate that eastern China experienced a significant 
ozone decrease between 2019 and 2021 due to both changes in 
anthropogenic emissions and meteorological conditions, while the rest 
of the regions in China experienced a less significant decrease or even an 

Fig. 10. Differences in warm season mean MDA8 ozone concentrations (μg/m3) between 2019 and 2021 driven by changes in anthropogenic emissions from (a) 
observation with meteorological effects removed based on GEOS-Chem simulations (b) and based on ML model prediction, and (c) differences driven by changes in 
NOx predicted by the ML model. 
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increase in ozone concentration due to less efficient reductions in 
anthropogenic emissions, especially NOx emissions. It highlights the 
urgent need to reduce ozone precursor emissions in the other regions of 
China, in addition to eastern China. 

4. Conclusions and discussions 

China has been suffering from a serious threat of ozone pollution in 
recent years. Based on surface ozone observations, GEOS-Chem simu
lations, and ML model predictions, this study quantifies the impacts of 
meteorological factors and anthropogenic emissions on changes in 
ozone concentrations in China during the warm season (April–Sep
tember) between 2019 and 2021. Different spatial patterns in changes in 
MDA8 ozone concentrations are revealed, with ozone decreasing by 
14.9 μg/m3 in eastern China and 4.8 μg/m3 in the rest of the country. 
According to the GEOS-Chem (LightGBM) results, changes in the 
meteorological conditions caused ozone decreases by 7.3 (6.8) μg/m3 in 
eastern China and 6.8 (7.0) μg/m3 in ROC, which can be explained by 
the decrease in net chemical production and weakened horizontal and 
vertical advection, respectively. 

With the influence of meteorological factors excluded based on the 
GEOS-Chem (LightGBM) results, the observations show that changes in 
anthropogenic emissions resulted in a regional ozone decrease by 7.6 
(8.1) μg/m3 in eastern China and an ozone increase by 2.0 (2.2) μg/m3 in 
ROC, respectively. The ML model suggested that contrasting changes in 
ozone are largely contributed by the changes in the ozone precursor 
NOx. The surface measurements and satellite retrievals also indicate that 
the reduction in NOx emission in ROC is less efficient than that in the 
more developed eastern China, leading to the contrasting changes in 
ozone concentrations between eastern China and ROC during 
2019–2021 driven by the changes in anthropogenic emissions. It high
lights the critical role of reductions in the ozone precursor emissions, 
especially NOx emissions, in lowering ozone over the other regions in 
China as well as eastern China. 

The effect of meteorological changes on ozone reduction in eastern 
China has also been found in previous studies, related to the changes in 
winds, temperature, and humidity (Yan et al., 2023). The changes in 
meteorological factors are likely associated with changes in El 
Niño–Southern Oscillation (ENSO) conditions. Yang et al. (2022) found 
that summertime ozone concentrations were positively correlated with 
the ENSO index, with an increase in ozone concentration during El Niño 
relative to La Niña years. Our present study is consistent with Yang et al. 
(2022) that the ozone concentration in the La Niña year 2021 is lower 
than that in the El Niño year 2019 across China. 

In our study, we found that ozone reductions in eastern China during 
2019–2021 were associated with reductions in NOx. This resonates with 
the ozone sensitivity region in China from 2005 to 2019 in the study of 
Du et al. (2022), who found that the VOC-limited regime gradually 
transitions to NOx-limited regime in China, especially in summer. 
Meanwhile, Lin et al. (2021) pointed out that a substantial reduction in 
NOx emission could also drive the ozone formation regime to shift from 
VOC-limited to NOx-limited or transitional regime in China. However, 
the identification of effective mitigation mechanisms and the formula
tion of precise quantitative mitigation recommendations require rele
vant sensitivity studies, which could be further examined in 
combination with VOCs data in the future. 

In addition, there are some uncertainties and limitations in analyzing 
the causes of ozone changes in different regions of China. Although the 
GEOS-Chem model has been demonstrated to capture the magnitude 
and spatiotemporal variations of ozone in China, it inevitably has some 
biases related to the implemented chemical mechanisms, initial fields, 
and resolution of the model (Travis and Jacob, 2019; Ye et al., 2022). 
Due to the presence of model deficits, GEOS-Chem may not accurately 
simulate the ozone response to meteorological changes and thus the 
impact of changes in emissions could be biased. Moreover, due to the 
limited amounts of data and feature selection for training, the results of 

the ML model cannot fully capture the ozone variations driven by 
anthropogenic emissions and meteorological factors. The emissions 
analysis in the ML model only considered NOx and did not include 
changes in VOCs due to the lack of VOCs emissions and observational 
data for year 2021. 

Overall, this study identifies different changes in near-surface ozone 
concentrations in different regions of China in 2021 compared to 2019. 
The focus of this work is to quantify the meteorological and emission 
effects on ozone changes, which is important for the future planning of 
ozone pollution mitigation in China. It also calls for attention to emis
sion reductions in the other regions in China. 
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