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A B S T R A C T

China suffers from serious haze pollution characterized by extremely low visibility due to intensive air pollutant
emissions. Designing effective visibility impairment control strategies requires quantitative measures of the
contributions of different sources. In this study, a source-oriented Community Multiscale Air Quality model was
applied to quantitatively determine the source contributions to visibility impairment in China in 2013. Emissions
of air pollutants from seven source categories (power plants, residential sources, industries, transportation, open
burning, dust, and agriculture) were separately tracked. The industrial sector dominates the visibility impair-
ment in Beijing, Chongqing, Guangzhou, and Shanghai, contributing to 32.6–40.7% of the overall light ex-
tinction coefficient (bext). Agriculture and power sources contribute 13.0–16.7% and 12.6–14.9% to bext, re-
spectively. The residential sector is the largest source of visibility impairment in Xi’an (39.5%). It also
contributes 12.3–25.2% in Beijing, Chongqing, Guangzhou, and Shanghai. Transportation (6.3–10.2%), open
burning (1.7–8.8%), and dust emission (1.0–3.6%) have relatively smaller contributions to bext in these cities.
The source contributions to bext exhibit strong spatial and seasonal variations. Contributions from industrial,
power, and residential sectors are higher in the North China Plain, Northeast China, and Sichuan Basin than in
other regions of China. Industrial and residential emissions become the most important sources of visibility
impairment in winter. In other seasons, industrial, power, and agriculture sources are important. The large
spatial and seasonal variations in the sources of bext suggest that different pollutants mitigation programs should
be designed for different regions and times of the year.

1. Introduction

Visibility, an indicator of the atmospheric transparency, refers to the
visual range that distant objects can be clearly discerned. Visibility is a
very important natural resource and also an important factor for the
protection of transportation safety. Visibility in the pristine atmosphere
is only influenced by light scattering of gas molecules (i.e., Rayleigh
scattering) and can reach approximately 300 km. In contaminated
areas, anthropogenic gaseous and particulate pollutants can cause sig-
nificant visibility impairment by scattering and absorbing light. Light
scattering by particles is the main reason for reduced visibility in most
areas (Hyslop, 2009).
China suffers from serious haze pollution characterized by

extremely low visibility caused by high loadings of fine particulate
matter (PM2.5). Along with the rapid economic growth and intensive
emissions from a large amount of fossil fuel consumption (Zeng et al.,
2019; Huang et al., 2017), urban and regional visibility in China has
been deteriorating (Chang et al., 2009; Che et al., 2009; Hu et al.,
2017c; Li et al., 2016a; Deng et al., 2014; Cheng et al., 2013b). Visi-
bility impairment during haze pollution events has caused serious ne-
gative impacts on transportation, economic production, and people’s
living. Therefore, developing emission control programs to improve
visibility in urgently needed in China.
The first step in developing an effective visibility improvement

program through emission control is to thoroughly understand the
contributions of different sources to visibility impairment. Previous
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analyses have shown that the most important sources of light absorp-
tion are gas-phase NO2 and particle-phase elemental carbon (Trijonis,
1984), and the main sources of light scattering are associated with
ammonium, sulfate, organic carbon and nitrate (Sisler and Malm,
1994). Furthermore, statistical analysis of long-term datasets shows
that there is a significant correlation between the visibility and the
relative humidity (RH) of ambient air (Deng et al., 2011; Xiao et al.,
2011).
A few studies have investigated the source contributions to light

extinction in China (Tao et al., 2014; Cao et al., 2012a; Wang et al.,
2013) using the receptor-based models. These studies focused on a few
megacities, such as Chengdu and Xi’an in China. Due to limitations in
the receptor-based models, the source contribution of secondary par-
ticulate matter (PM), which generally accounts for a significant fraction
of the total PM2.5 mass (Huang et al., 2014), was not quantitatively
estimated. Source-oriented air quality models were developed to ac-
curately determine source contributions to primary and secondary
PM2.5. Ying et al. (2004) and Chen et al. (2009) have used source-or-
iented air quality models to successfully predict source contributions to
visibility impairment in the United States.
A source-oriented Community Multiscale Air Quality (CMAQ)

modeling system has been developed and applied to predict the con-
centrations of gaseous and particulate pollutants and their spatial and
temporal variations in 2013 in China (Hu et al., 2016, 2017b; Ying
et al., 2018), and to quantify the contributions of different source sec-
tors to PM2.5 (Hu et al., 2017a; Chen et al., 2019) and its components,
including primary PM2.5 (Hu et al., 2015b), secondary inorganic PM2.5
(i.e., ammonium ion, sulfate, and nitrate) (Shi et al., 2017), and sec-
ondary organic PM2.5 (Wang et al., 2018). The predicted source con-
tributions to detailed PM2.5 components make it possible to further
determine the contributions of different source sectors to visibility
impairment. The objective of this study is to quantify the source con-
tributions to visibility impairment in 2013 in China using the source-
oriented CMAQ model predictions. Model predicted light extinction
coefficient (bext) is evaluated against bext calculated from observed vi-
sual range data. Contributions of different bext components to the total
are estimated. The contributions of different sources to bext are then
quantified using the source apportionment results of the PM2.5 com-
ponents predicted by the source-oriented CMAQ model. The results of
this study will improve our understanding of the major sources that
affect visibility impairment in China, and provide valuable scientific
information for designing effective control strategies to improve visi-
bility.

2. Method

2.1. Source oriented CMAQ model

The source-oriented CMAQ model applied in this study was devel-
oped based on CMAQ v5.0.1. The features and algorithms of the source-
oriented CMAQ model were described in details by Shi et al. (Shi et al.,
2017). A few updates were made to the original CMAQ model, in-
cluding heterogeneous formation pathways of secondary inorganic (i.e.,
sulfate and nitrate) and organic aerosols. Details about the updates
were documented in previous studies (Hu et al., 2016, 2017b) and re-
ferences therein. The source-oriented CMAQ model was applied to si-
mulate air quality in China using a 36× 36 km2 horizontal resolution
for the entire year of 2013. Anthropogenic emissions in China were
based on the Multi-resolution Emission Inventory for China of 2012
(MEIC) developed by Tsinghua University (http://www.meicmodel.
org), and in other countries were based on the Regional Emission in-
ventory in Asia version 2 (REAS2) (Kurokawa et al., 2013). Biogenic
emissions were generated using the Model for Emissions of Gases and
Aerosols from Nature (MEGAN) v2.1. Meteorological conditions were
simulated using the Weather Research and Forecasting (WRF) v3.6.1.
Details of model configurations of the CMAQ, MEGAN, and WRF

models and other inputs such as initial conditions and boundary con-
ditions were provided in Hu et al. (2016) and therefore not repeated
here.
Model performance on predicting the temporal and spatial variation

of air pollutants in China has been extensively evaluated. Hu et al.
(2016, 2017b) compared modeled PM2.5, O3, and other criteria pollu-
tants against ambient air quality observations at 422 sites in China, and
calculated statistical matrix such as mean fractional bias (MFB), mean

Table 1
Model performance of predicted light extinction coefficients in 59 cities in
China. MO: mean observations; MP: mean predictions; MFB: mean fractional
bias; MFE: mean fractional errors.

City first method second method

MO MP MFB MFE MO MP MFB MFE

Baoding 0.29 0.44 0.11 0.53 0.29 0.64 0.36 0.69
Beijing 0.29 0.31 −0.07 0.41 0.29 0.45 0.17 0.53
Cangzhou 0.28 0.38 0.02 0.49 0.28 0.56 0.31 0.62
Changchun 0.27 0.33 −0.17 0.59 0.27 0.48 0.05 0.7
Changsha 0.24 0.73 0.81 0.84 0.24 1.04 1.02 1.04
Chengde 0.15 0.22 0.07 0.54 0.15 0.31 0.26 0.68
Chengdu 0.3 0.46 0.26 0.44 0.3 0.67 0.55 0.67
Chongqing 0.53 0.56 −0.15 0.46 0.53 0.78 0.13 0.49
Dalian 0.22 0.21 −0.28 0.54 0.22 0.29 −0.07 0.6
Fuzhou 0.2 0.13 −0.51 0.63 0.2 0.16 −0.4 0.63
Guangzhou 0.2 0.24 0.07 0.42 0.2 0.29 0.19 0.48
Guiyang 0.24 0.41 0.1 0.61 0.24 0.55 0.27 0.76
Haerbin 0.23 0.49 0.4 0.66 0.23 0.7 0.64 0.87
Haikou 0.15 0.14 −0.31 0.61 0.15 0.18 −0.24 0.69
Handan 0.39 0.62 0.16 0.44 0.39 0.92 0.49 0.63
Hangzhou 0.55 0.38 −0.32 0.48 0.55 0.56 −0.02 0.43
Hefei 0.41 0.54 0.07 0.44 0.41 0.78 0.36 0.59
Hengshui 0.25 0.47 0.31 0.53 0.25 0.69 0.6 0.74
Huaian 0.61 0.41 −0.44 0.58 0.61 0.59 −0.16 0.53
Huhehaote 0.19 0.2 −0.17 0.63 0.19 0.27 −0.02 0.71
Huzhou 0.44 0.33 −0.36 0.49 0.44 0.46 −0.11 0.48
Jiaxing 0.27 0.3 0.03 0.44 0.27 0.42 0.27 0.6
Jinan 0.24 0.4 0.31 0.52 0.24 0.61 0.6 0.74
Jinhua 0.28 0.17 −0.66 0.73 0.28 0.25 −0.46 0.71
Kunming 0.19 0.18 −0.3 0.65 0.19 0.24 −0.16 0.74
Langfang 0.36 0.41 −0.1 0.5 0.36 0.59 0.18 0.59
Lanzhou 0.21 0.12 −0.66 0.72 0.21 0.16 −0.52 0.72
Lasa 0.1 0.02 −1.32 1.32 0.1 0.02 −1.34 1.34
Lianyungang 0.39 0.34 −0.23 0.52 0.39 0.49 0.02 0.57
Lishui 0.3 0.14 −0.9 0.95 0.3 0.19 −0.75 0.89
Nanchang 0.32 0.29 −0.32 0.49 0.32 0.41 −0.08 0.55
Nanjing 0.37 0.41 −0.04 0.4 0.37 0.61 0.27 0.53
Nanning 0.21 0.25 −0.02 0.45 0.21 0.33 0.13 0.57
Nantong 0.45 0.46 −0.03 0.4 0.45 0.65 0.24 0.5
Qingdao 0.31 0.38 0 0.49 0.31 0.55 0.28 0.62
Qinghuang 0.23 0.4 0.21 0.59 0.23 0.54 0.41 0.73
Quzhou 0.36 0.22 −0.64 0.72 0.36 0.3 −0.45 0.68
Shanghai 0.23 0.31 0.23 0.42 0.23 0.44 0.48 0.6
Shaoxing 0.26 0.22 −0.32 0.5 0.26 0.31 −0.13 0.54
Shenyang 0.23 0.47 0.27 0.63 0.23 0.69 0.49 0.78
Shijiazhuang 0.32 0.42 −0.04 0.52 0.32 0.63 0.24 0.66
Suqian 0.38 0.38 −0.12 0.44 0.38 0.56 0.16 0.53
Suzhou 0.31 0.26 −0.3 0.47 0.31 0.37 −0.04 0.46
Taiyuan 0.24 0.28 0.02 0.38 0.24 0.4 0.26 0.51
Taizhoushi 0.35 0.43 0.09 0.42 0.35 0.62 0.37 0.59
Taizhou 0.3 0.25 −0.2 0.34 0.3 0.37 0.11 0.44
Tangshan 0.3 0.43 0.19 0.45 0.3 0.63 0.48 0.64
Tianjin 0.32 0.4 0.02 0.49 0.32 0.59 0.31 0.61
Wenzhou 0.24 0.13 −0.78 0.85 0.24 0.16 −0.68 0.82
Wuhan 0.28 1.03 0.87 0.91 0.28 1.4 1.08 1.1
Wulumuqi 0.13 0.16 −0.32 0.72 0.13 0.18 −0.28 0.74
Wuxi 0.41 0.31 −0.37 0.47 0.41 0.45 −0.09 0.46
Xian 0.26 0.36 0.05 0.46 0.26 0.52 0.3 0.59
Xining 0.14 0.11 −0.4 0.55 0.14 0.13 −0.31 0.6
Xuzhou 0.35 0.49 0.16 0.47 0.35 0.74 0.47 0.65
Yangzhou 0.33 0.36 −0.05 0.41 0.33 0.54 0.24 0.55
Yinchuan 0.21 0.08 −0.9 0.94 0.21 0.1 −0.82 0.92
Zhengzhou 0.62 0.49 −0.24 0.52 0.62 0.75 0.1 0.49
Zhuhai 0.26 0.16 −0.6 0.71 0.26 0.2 −0.51 0.7
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fractional error (MFE), mean normalized bias (MNB), and mean nor-
malized error (MNE). Predicted O3 generally has an MNB≤±15% and
an MNE≤35%, within the O3 performance criteria suggested by the
U.S. EPA (2007). Predicted PM2.5 generally has an MFB ≤±60% and
an MFE≤75%, meeting the PM2.5 criteria suggested by Boylan and
Russell (2006). Model predictions of PM2.5 components were compared
to observations at a few monitoring sites in different regions of China,
inclding elemental carbon (EC), organic carbon (OC) (Hu et al., 2017b),
sulfate, nitrate, and ammonia (Shi et al., 2017). Overall, the model
captured the observed temporal and spatial variation and showed good
agreement with observations at multiple sites. Model predicted source
contributions to EC agreed with the source contributions estimated by a
recetpor-based mehtod (Hu et al., 2015b). The evaluation exercise for
the source-oriented CMAQ model builds confidence in further study to
estimate the source contributions to different PM2.5 components (Shi
et al., 2017) and to visibility impairment in the current study.

2.2. Estimation of light extinction coefficient

Visual impairment in the atmosphere is caused by scattering and
absorbing light by gases and particles. The attenuation of light in the
atmosphere is usually quantified by light extinction coefficient (bext,
km−1). bext is usually decomposed into the contributions from scat-
tering and absorption associated with gases and particles:

= + + +b b b b bext ag sg ap sp (1)

where bag is the gas absorption coefficient mainly due to NO2, bsg is the
Rayleigh scattering coefficient by clean air, bap is the absorption coef-
ficient due to particles (mainly due to EC), and bsp is the scattering
coefficient due to particles (Seinfeld and Pandis, 1998).
Hygroscopic particle components such as sulfates and nitrates can

grow into more efficient light-scattering sizes under high relative

humidity conditions (Chow et al., 2002). According to relationships
described by Pitchford et al. (2007), this growth is approximated by:

= ×b f(RH) bsp,wet sp,dry (2)

where bsp,wet is the wet scattering coefficient, f(RH) is the growth
function, and bsp,dry is the dry scattering coefficient measured by ne-
phelometer at RH < 60%. The f(RH) curve from Malm et al. (2003)
was used in this study. In addition, f(RH) obtained in Beijing (Yan et al.,
2009) was also used to estimate bext, and more details are provided in
the discussion section.
The absorption coefficient was approximated by multiplying the

Interagency Monitoring of Protected Visual Environments (IMPROVE)
mass extinction efficiency of 10m2 g−1 to the EC concentration (Chow
et al., 2010; Pitchford et al., 2007; Watson, 2002):

= × ×b (km ) 10(m ·g ) [EC](µg·m ) 0.001ap
1 2 1 3 (3)

The absorption of NO2 gas (bag) was estimated by using the ab-
sorption efficiency of Pitchford et al. (2007):

= ×b (km ) 0.00033 [NO ](ppb)ag
1

2 (4)

The Rayleigh scattering coefficient (bsg) was assumed to be a con-
stant value of 0.01 km−1 at sea level (Watson, 2002).
In the study, two methods were used to estimate bext. The original

IMPROVE algorithm used in the first method takes the following form
where the particle component concentrations are indicated in the
brackets (Malm et al., 2000):

× × + × ×
+ × + × + ×
+ × +

b 0.003 f(RH) [Sulfate] 0.003 f(RH) [Nitrate]
0.004 [OM] 0.01 [EC] 0.001 [Fine Soil]
0.0006 [Coarse Mass] 0.01

ext

(5)

The revised IMPROVE chemical extinction equation (Pitchford
et al., 2007) used in the second method is:

× × + ×
× + × × + ×
× + × + ×
+ × + × + × ×
+ × +
+ ×

b 0.0022 f (RH) [Small Sulfate] 0.0048 f (RH)
[Large Sulfate] 0.0024 f (RH) [Small Nitrate] 0.0051 f (RH)
[Large Nitrate] 0.0028 [Small OM] 0.0061 [Large OM]
0.01 [EC] 0.001 [Soil dust] 0.0017 f (RH) [Sea Salt]
0.0006 [Coarse Mass] Rayleigh Scattering(Site Specific)
0.00033 [NO ](ppb)

ext s l

s l

ss

2 (6)

where fl(RH) and fs(RH) represent the growth function for the large and
small size sulfate and nitrate. The large and small sulfate indicate the
formation through dry and aqueous mechanisms (John et al., 1990) and
are defined by the IMPROVE equation as:

= < µg[Large Sulfate] [Total Sulfate] /20, for [Total Sulfate] 20 ·m2 3 (7)

=[Large Sulfate] [Total Sulfate], for [Total Sulfate] 20µg·m 3 (8)

=[Small Sulfate] [Total Sulfate] [Large Sulfate] (9)

The same method was used to separate total nitrate and organic
mass (OM) concentrations into the large and small size fractions. OM
was estimated by multiplying the OC concentration with 1.6, which is
suitable for urban aerosol (Turpin and Lim, 2001). The soil fraction was
estimated from the Fe level according to the global crustal abundance of
3.5% (Taylor and McLenna, 1985):

= × = ×[Soil dust] (1/0.035) [Fe] 28.57 [Fe] (10)

This calculation assumes that Fe is all from soil dust. Globally, the
dust iron content accounts for 95% of the global atmospheric iron cycle,
while the anthropogenic aerosol iron content accounts for only 5% of
the global atmospheric iron cycle (Jickells et al., 2005; Luo et al.,
2008). It should be noted that the dust concentrations could be over-
estimated by Eq. 10, especially in urban areas where anthropogenic
contributions to Fe could be higher.

Fig. 1. MFB and MFE in different seasons with the two methods.
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2.3. ‘Observed’ bext

According to Koschmieder’s formula, both the hourly visual range
measurement in a one-year field observation dataset and the in-
stantaneous visual range observation in a long-term meteorological
dataset were converted to bext (Larson and Cass, 1989):

=b 2.996/Visual Rangeext (11)

where the unit of bext is km−1, and the unit of visual range is km. Ac-
cording to the recommendation from the WMO observation handbook,
the coefficient of 2.996 is used because of the contrast threshold se-
lection of 0.05 (WMO, 2008). The daily visual range data was down-
loaded from the National Climate Data Center (NCDC) (ftp://
ftp.ncdc.noaa.gov/pub/data/noaa/). Quality control on the visibility
data was performed following the method described by Li et al.
(2016b). What about the hourly dataset?

3. Results

3.1. Model evaluation on bext

Table 1 shows the statistical performance evaluation of the

predicted bext in fifty-nine cities in China. The locations of fifty-nine
cities are in Fig. 3e. Mean observed values (MO), mean predicted values
(MP), MFB, and MFE of predictions with the two methods were cal-
culated. The MFB and MFE were calculated by:

=
+=N

C C
C C

MFB 1 ( )
( )/2i

N m o

m o1 (12)

=
+=N

C C
C C

MFE 1 | |
( )/2i

N m o

m o1 (13)

where Cm is the model-estimated concentration, Co is the observed
concentration, and N equals the number of estimate–observation pairs’
data.
The criteria for visibility by models recommended by Boylan and

Russell (2006) are MFB within± 0.6 and MFE less than 0.75, which are
considered as acceptable model performances. In fifty out of the fifty-
nine cities, the values for MFB and MFE of bext calculated using both
methods comply with the performance criteria. Results from the second
method are slightly better than the first method in most cities in gen-
eral. The nine cities where MFB and MFE do not meet the criteria are
Changsha, Lasa, Lishui, Wenzhou, Wuhan, Yinchuan, Jinhua, Lanzhou,
and Quzhou with the first method, and are Changsha, Lasa, Lishui,

Fig. 2. Time series of observed and predicted light extinction coefficient at 5 major cities in China. Each data point in Fig. 2 represents observed daily average bext
and the lines represent predicted daily average bext using the two methods.
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Wenzhou, Wuhan, Yinchuan, Guiyang, Haerbin, and Shenyang with the
second method. Predicted PM2.5 concentrations at these cities are lar-
gely biased from observations (Figure S1) and therefore cause the large
bias in predicted bext.

Fig. 1 shows MFB and MFE in different seasons and the whole year
with the two methods. Both methods yield negative MFB values in
spring, summer, fall and the whole year, which means that the model
underestimates the bext. This is consistent with the underprediction of
PM2.5 in spring, summer and fall, as shown in Figure S2. MFB values are
positive in winter, indicating overestimates of bext by the model. In
general, the MFB values, which range from -0.29 to 0.56, all meet the
performance criteria; the MFE values also meet the criteria of 0.75
except in winter (MFE value of 0.84).
Fig. 2 shows time-series of daily observed and predicted bext at

Beijing, Chongqing, Guangzhou, Shanghai, and Xi’an five mega-cities in
China. The five cities are economic and transportation centers the North
China Plain, Yangtze River Delta, Pearl River Delta, Guanzhong Plain
and Sichuan Basin of China. These five regions are the most populous
regions and also have been suffering from the most serious air pollution
problems in China (Hu et al., 2015a). Predictions with the two methods
are included in the comparison. Each data point in Fig. 2 represents
observed daily average bext and the lines represent predicted daily
average bext using the two methods. The daily average values of pre-
dicted bext using the two methods are generally consistent with ob-
servations in spring, summer, and fall at the five cities. The MFB values
of the five cities using the first method are -0.07, -0.15, 0.07, 0.23 and
0.05, and are 0.17, 0.13, 0.19, 0.48 and 0.3 with the second method.
Predicted daily-averaged bext using the two methods in winter is larger
than observations at the five cities, consistent with results from Fig. 1.
The second method indicates a slightly larger bext than the first method.

Fig. 3. Spatial distribution of seasonally- and annually-average of bext, unit is km−1. The locations of fifty-nine cities are in Fig. 3e.

Fig. 4. The relative contributions of bag, bsg, bap, and bsp to the total light ex-
tinction coefficient in the 5 major cities in China. Where bag is the gas ab-
sorption coefficient, bsg is the Rayleigh scattering coefficient, bap is the ab-
sorption coefficient, and bsp is the scattering coefficient.
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bext calculated by the second method is used in the rest of the analyses
in the study.

3.2. Contributions of different components to bext

Fig. 3 shows the spatial distribution of seasonally- and annually-
averaged bext in 2013. Clear seasonal and spatial variations are found in
bext. In eastern China, the annual average bext is greater than 0.3 km−1,
larger than that in western China (< 0.1 km−1), due to the influence of
human activities. Moreover, the bext in winter is greater than 0.9 km−1

in large areas in the eastern and northeastern China. The value is

several times higher than that of other seasons in the same regions. This
difference is mainly attributed to more intensive emissions of air pol-
lutants and weaker atmospheric transport and dispersion in winter.
As shown in (Eq. 1), bext is composed of four components, i.e., bag,

bsg, bap, and bsp. Fig. 4 illustrates the relative contributions of the four
components to the total bext in the five major cities shown in Fig. 2. bsp
has the largest relative contribution in all the five cities, around or more
than 90%. bap is the second important factor, contributing to about 8%
of bext. The contributions of bag and bsg are very small, and mostly less
than 2%. Since the effects of gaseous pollutants are negligible, only bap
+ bsp is considered in the following bext source apportionment

Fig. 5. Seasonally- and annually-average contributions of different particle compositions to bap+bsp in the 5 major cities in China. The number above each pie
represents the value of bap+bsp in the unit of km−1.

Fig. 6. Seasonally- and annually-averaged contributions of different sources to bap+bsp in the 5 major cities in China. The number above each pie represents bap+bsp
in the unit of km−1.
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analyses.
Fig. 5 shows the contributions of different particle components to

the seasonal and annual average of bap + bsp in the five cities. The
contribution of water vapor on visibility is attributed to particle com-
ponents (i.e., sulfate, nitrate, sea salt, etc.) according to the f(RH)
function associated with them. Except for Beijing, the bap + bsp values
exhibit similar seasonal variations, reaching the highest value in winter
and decreasing to the lowest in summer. The lowest bext in Beijing
occurs in the spring. Sulfate makes the largest annual average con-
tribution to bext in Chongqing, Guangzhou, Shanghai, and Xi’an, ac-
counting for 48.7%, 55.7%, 47.9% and, 32.3%, respectively. The
second largest contributor is nitrate (16.1–34.2%) in Beijing,

Chongqing, and Shanghai, and organic mass (14.0–28.5%) in
Guangzhou and Xi’an. Elemental carbon is also important, accounting
for 4.8–9.3% in the five cities. Different components have different
seasonal variations. In Beijing, Guangzhou, Shanghai, and Xi’an, the
contribution of sulfate in summer is larger than that in spring, fall and
winter. The contribution of nitrate in summer is relatively smaller than
that in spring, fall, and winter. The contribution of organic mass in-
creases from spring to summer and from fall to winter but decreases
from summer to fall in Beijing, Chongqing, Shanghai, and Xi’an. This
trend is opposite in Guangzhou.

Fig. 7. Annual average regional source contributions of bsp+bap. Unit in km−1.
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3.3. Source contributions to bext

Fig. 6 shows the seasonally- and annually-averaged contributions of
different sources to bap + bsp in the five major cities. The source con-
tributions to annually-averaged bap + bsp are similar in Beijing,
Guangzhou, Chongqing, and Shanghai. The industrial source is the
dominant source, contributing 33–41% to the total. Agriculture, power,
and residential source are also important, contributing 13–17%,
13–15%, and 12–25%, respectively. Source contributions exhibit clear
seasonal variations. Residential emission is higher in winter, with re-
lative contributions of approximately 45% in Beijing and Xi’an, which is
about 2 times of that in Guangzhou (21%) and Shanghai (23%). In
summer, the power source in Beijing, Chongqing, Shanghai and Xi’an
and the transportation source in the five cities has the lowest con-
tribution during the year. The contribution of the industrial source is
larger in summer and fall than that in spring and winter in Beijing,
Guangzhou, and Shanghai. Source contributions from open burning,
agriculture, and dust emissions also exhibit substantial seasonal varia-
tions. Open burning in spring and summer is more important in most
cities except in Guangzhou. Agriculture contributes less in summer than
in the other seasons. Dust contributes less in winter than in other sea-
sons in the five cities.

Fig. 7 shows the regional source apportionment of annually-aver-
aged bap+bsp. The seasonally-average results are shown in Figure S3 in
the supplemental materials. Contribution from the power source sector
(> 0.1 km−1) is higher in the North China Plain, Northeast China, and
the Sichuan Basin than in other regions. The industrial sector has a
similar spatial pattern as the power sector, but with a greater con-
tribution of over 0.2 km-1 in the North China Plain, Northeast China,
and the Sichuan Basin. The residential emission sector exhibits sub-
stantial spatial variations. It is an important source contributing to bap
+ bsp, with more than 0.1 km-1 in spring, summer, and fall in the North
China Plain, the Northeast Plain and the Sichuan Basin. Its contribution
reaches more than 0.4 km-1 in winter. The contribution of agriculture to
bap + bsp is higher in eastern China due to intensive agricultural ac-
tivities in this region. The contribution is larger in winter due to more
ammonium sulfate and ammonium nitrate formation than other sea-
sons. Open burning is an important source in southern China in the
spring. This is likely attributed to the transport of emissions from
Southeast Asia countries (Chen et al., 2017). Open burning is also im-
portant in North China Plain and Sichuan basin in summer. The dust
source shows important contribution in northwest China, due to a large
amount of fugitive dust emission in this region. The contribution of dust
is relatively small in the eastern and southern China.

4. Discussion

Fig. 8a shows the comparison of the composition contributions to
PM2.5 mass concentrations and to bext. In all the five cities, soil dust,
coarse mass, and OM contribute much less to bext than that to the total
PM2.5 mass. However, sulfate, nitrate, and EC show an opposite trend.
Therefore, sulfate, nitrate, and EC are more important to bext. In addi-
tion, source contributions to PM2.5 mass are also different from those to
bext, as shown in Fig. 8b. Dust source exhibits greater influence on the
total PM2.5 mass than to bext. Impacts of power, industrial and agri-
culture sources are stronger on bext than the total PM2.5 mass. This trend
is similar in all five cities. Sources that contribute largely to secondary
inorganic components, such as power, industrial and agriculture
sources, are more important to bext then to PM2.5 mass, therefore re-
ducing emissions from these sources will be effective for improving
visibility.
The predicted values of source contributions to bext in the current

study are affected by a few factors. Firstly, uncertainties in emission
data affect the accuracy of the estimated source contributions to the
bext. Previous studies indicated that emission estimation was affected by
uncertainties associated with the emission factors and activity levels
(Lei et al., 2011). In addition, the uncertainties in emissions vary in
different regions of China. Estimation of the emissions in the Pearl River
Delta, North China Plain, and Yangtze River Delta regions are usually
more accurate, because research on air quality problems in these three
regions started much earlier than other regions in China (Bouarar et al.,
2019; Cheng et al., 2013a; Liu et al., 2018). As a result, source con-
tribution predictions of bext are more accurate than other regions such
as western China. Quantitative analysis of the effects of uncertainties in
emissions on the source contribution estimation is highly valuable in
future studies when uncertainties in emissions of each sector in the
inventory become available.
Secondly, the IMPROVE and revised IMPROVE algorithms are used

to calculate bext with different PM chemical compositions. These re-
lationships were developed based on the U.S. data and are likely dif-
ferent in China, as indicated by previous observational studies (Cao
et al., 2012b; Jung et al., 2009a, b). Table 2 shows the statistical per-
formance evaluation of the predicted bext in fifty-nine cities in China
using Beijing’s growth functions, reported by Yan et al. (2009), using
the revised algorithm. Two growth functions were provided by Yan
et al. (2009), one is for the ‘clean’ conditions and the other is for the
‘polluted’ condition in Beijing. The two growth functions were both
used to estimate bext and the results were compared to the estimations

Fig. 8. Comparison of source contributions and species contributions to PM2.5
mass and light extinction coefficient. The suffix of _PM25 is the contribution to
PM2.5 mass and the suffix of _bext is the contribution to light extinction coef-
ficient.
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with growth function from Malm et al. (2003). The red numbers in
Table 2 indicate that the result of Beijing’s data becomes worse, and the
blue numbers indicate that the result becomes better. The results show
that the value of twenty-nine cities under the clean condition and thirty
cities under the polluted condition have improved, but the number of
cities that do not meet the standards has also increased. The results in
Beijing and cities in the North China Plain (the region in which Beijing
is located) are all improved. But the results in some other cities, espe-
cially cities in south China become worse. The results indicate that the
parameters obtained in Beijing do not apply to other regions. Devel-
oping the local relationships between bext and PM compositions in
China will lower the discrepancies between the predicted and observed
bext and thus improve the accuracy of estimated source contributions of
bext using the source-oriented model.

The aerosol optical properties are influenced by the mixing state of
PM (Curci et al., 2015). Therefore, further research is recommended to
more accurately represent the aerosol mixing state in the model in
order to accurately simulate the relevant optical properties. The influ-
ence of brown carbon optical properties is also important, but the re-
lationships between the emission source and optical properties of
brown carbon are not well established and need more research (Yan
et al., 2018). Relatively larger discrepancies between observed and
estimated bext in winter were observed and this likely causes bias in
source contribution estimation. Above mentioned factors, such as un-
certainties associated with emissions in winter, relationships between
bext and particle compositions, model treatments in particle mixing
states and brown carbon, etc., can contribute to the discrepancies. To
elucidate clearly the exact contributions of the different factors to the

Table 2
Model performance of predicted light extinction coefficients in 59 cities in China using Beijing’s growth
functions.
XXX
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discrepancies, more studies with comprehensive measurements of
PM2.5 chemical, physical and optical properties are needed in the fu-
ture.

5. Conclusions

In this study, a CMAQ source-oriented air quality model was used to
simulate the contributions of different sources to air pollutants that
affect the bext during the whole year of 2013 in China. bext was calcu-
lated using the predicted concentrations of these pollutant compositions
with the IMPROVE and revised IMPROVE algorithms. The predicted
bext is in general agreement with bext derived from observed visibility
range in spring, summer, and fall, but is slightly over-predicted during
winter of 2013. The bext is mainly affected by PM absorption (due to
EC) and scattering (mainly due to sulfate, nitrate, and OM components).
The source contributions to the bext and their seasonal variations in
Beijing, Chongqing, Guangzhou, Shanghai, and Xi’an are similar. In
Beijing, Chongqing, Guangzhou, and Shanghai, the industry sector is
the largest source to bext, followed by the residential source which is
very important especially in winter. The contributions of power and
agriculture emissions are also important. Overall, the annual bext of
2013 in China is mainly attributed to emissions from industrial (36%),
residential (20%), agricultural (15%), power plants (14%), transpor-
tation (8%), open burning (4%) and dust (3%). Source contributions to
bext vary substantially in different regions. The main source sectors of
the North China Plain, Northeast China, and Sichuan Basin contribute
more than other regions. Control of emissions from industrial, re-
sidential and agricultural sources are recommended to improve visibi-
lity in China, with the different region- and season- specific control
strategies.
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