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Abstract Ozone (O3) pollution is a severe air quality issue in China, posing a threat to human health and
ecosystems. The climate change will affect O3 levels by directly changing physical and chemical processes of
O3 and indirectly changing natural emissions of O3 precursors. In this study, near‐surface O3 concentrations in
China in 2030 and 2060 are predicted using the process‐based interpretable Extreme Gradient Boosting
(XGBoost) model integrated with multi‐source data. The results show that the climate‐driven O3 levels over
eastern China are projected to decrease by more than 0.4 ppb in 2060 under the carbon neutral scenario (SSP1‐
1.9) compared with the high emission scenario (SSP5‐8.5). Among this reduction, 80% is attributed to the
changes in physical and chemical processes of O3 related to a cooler climate, while the remaining 20% is
attributed to the reduced biogenic isoprene emissions.

Plain Language Summary O3 pollution is a severe air quality issue in China that threatens human
health and ecosystem. Under the background of climate change, O3 pollution will continue to evolve in the
future. Here, we predict near‐surface O3 concentrations in China in 2030 and 2060 based on an interpretable
machine learning method, integrated with physical and chemical processes of O3, natural emissions of O3

precursors, and other multi‐source data. The direct (via changing physical and chemical processes of O3) and
indirect (via changing natural emissions of O3 precursors) impacts of future climate change on O3

concentrations are quantitatively analyzed. It demonstrates that the climate‐driven O3 levels are projected to
decrease by more than 0.4 ppb in 2060 over eastern China under a carbon neutral scenario relative to a high
emission scenario. The changes in physical and chemical processes under climate change play a more important
role in regulating O3 concentrations in the future than the changes in natural emissions.

1. Introduction
Tropospheric O3 is generated by sunlight‐driven photochemical reactions of nitrogen oxides (NOx ≡ NO + NO2)
and reactive carbon species, including carbon monoxide (CO) and volatile organic compounds (VOCs). O3

absorbs ultraviolet solar radiation and consequently acts as an important anthropogenic greenhouse gas (Checa‐
Garcia et al., 2018; Gao et al., 2022; Gaudel et al., 2018). Exposure to high concentrations of O3 harms human
health (Anenberg et al., 2010; Bell et al., 2004; Lelieveld et al., 2015; Malley et al., 2017), and ecosystems
(Ainsworth et al., 2012; Mills et al., 2018; Monks et al., 2015; Yue et al., 2017). In recent years, although a series
of emission control policies have been implemented since 2010s, China still suffers from serve O3 pollution (Lu
et al., 2020; Ni et al., 2023).

In addition to precursor emissions, recent evidences have pointed out that variations in meteorological parameters
due to climate change also play vital roles in influencing O3 concentrations (Doherty et al., 2013; Fu & Tian,
2019; Gong & Liao, 2019; Jacob & Winner, 2009; Kavassalis & Murphy, 2017; H. Li et al., 2023; M. Li et al.,
2023; Lu, Zhang, Chen, et al., 2019; Lu, Zhang, & Shen, 2019; P.Wang et al., 2022; Yang et al., 2014, 2022; Zhou
et al., 2022). Several studies have estimated future O3 changes in China under different scenarios. Chen
et al. (2018) projected a 10.7% increase in annual average O3 concentrations in China by 2055 compared to 2015,
due to climate warming under the RCP (Representative Concentration Pathway) 8.5 scenario through the GFDL‐

RESEARCH LETTER
10.1029/2024GL109520

Key Points:
• Climate change influences O3 pollution

in China through changing physical
and chemical processes and natural
precursor emissions of O3

• Physical and chemical processes play a
dominant role in regulating future near‐
surface O3 concentrations over eastern
China

• Carbon neutral scenario is an ideal
pathway for China to mitigate both
climate change and O3 pollution in
2060

Supporting Information:
Supporting Information may be found in
the online version of this article.

Correspondence to:
Y. Yang,
yang.yang@nuist.edu.cn

Citation:
Li, H., Yang, Y., Su, H., Wang, H., Wang,
P., & Liao, H. (2024). Ozone pollution in
China affected by climate change in a
carbon neutral future as predicted by a
process‐based interpretable machine
learning method. Geophysical Research
Letters, 51, e2024GL109520. https://doi.
org/10.1029/2024GL109520

Received 10 APR 2024
Accepted 25 JUN 2024

Author Contributions:
Conceptualization: Huimin Li,
Yang Yang
Data curation: Huimin Li
Formal analysis: Huimin Li, Yang Yang,
Hang Su, Hailong Wang
Investigation: Huimin Li
Methodology: Huimin Li
Project administration: Yang Yang
Software: Huimin Li
Supervision: Yang Yang
Visualization: Huimin Li
Writing – original draft: Huimin Li
Writing – review & editing: Yang Yang,
Hang Su, Hailong Wang, Pinya Wang,
Hong Liao

© 2024. The Author(s).
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

LI ET AL. 1 of 11

https://orcid.org/0000-0001-8484-4566
https://orcid.org/0000-0002-9008-5137
https://orcid.org/0000-0003-4889-1669
https://orcid.org/0000-0002-1994-4402
https://orcid.org/0000-0001-7034-7868
https://orcid.org/0000-0001-6628-1798
mailto:yang.yang@nuist.edu.cn
https://doi.org/10.1029/2024GL109520
https://doi.org/10.1029/2024GL109520
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2024GL109520&domain=pdf&date_stamp=2024-07-06


CM3 climate model simulations together with a statistical downscaling approach. Based on multi‐model simu-
lations from the Coupled Model Intercomparison Project Phase 6 (CMIP6), P. Wang et al. (2022) revealed that,
owing to the high sensitivity of O3 concentrations to climate warming, extreme O3 pollution events over North
China Plain are projected to co‐occur more frequently with extreme high temperatures in 2050. Zhou et al. (2022)
predicted an increase in future O3 levels over China associated with changes in Asian summer monsoon strength
calculated from the CMIP6 projections under strong warming scenarios. H. Li et al. (2023) predicted a strong O3‐
climate penalty over eastern China and suggested that the future climate change would expand the summertime
O3 pollution from northern China to southern China and extend it into the cold season. To mitigate risks asso-
ciated with climate change, the Chinese government has committed to reach peak carbon emissions before 2030
and achieve carbon neutrality by 2060. China's net‐zero climate mitigation policy can exert positive impacts on air
quality, public health, and social economy (M. Li et al., 2019; Y. Wang et al., 2022). However, limited studies
have investigated the impacts of climate change on O3 pollution in China following the carbon neutral pathway.

In addition to directly interfering with the photochemical production, regional transport, and deposition of O3,
variations in meteorological conditions under climate change also indirectly affect O3 by altering the natural
precursor emissions (Fiore et al., 2015; Hong et al., 2019; Zanis et al., 2022). As one of the dominant O3 pre-
cursors, VOCsmainly originate from terrestrial ecosystems (Kesselmeier & Staudt, 1999) and up to 90% of VOCs
derive from biogenic sources (Guenther et al., 1995). Biogenic VOCs (BVOCs) emissions strongly depend on the
meteorological conditions, such as ambient temperature, solar radiation, relative humidity, and precipitation
(Debevec et al., 2018; Yáñez‐Serrano et al., 2020; Zhang et al., 2008). S. Liu et al. (2019) showed that rising
temperature enhances BVOCs emissions, which would further lead to a 0.9% increase in O3 generation over
eastern China by 2050s under the RCP8.5 scenario relative to 2015s, according to simulations conducted with the
Community Multi‐scale Air Quality (CMAQ) model. However, few studies have distinguished the relative
importance between the direct (via changing physical and chemical processes of O3) and indirect (via changing
natural emissions of O3 precursors) impacts of future climate change on O3 variations in China, which is
conducive to the control of O3 pollution in the future.

Recently, machine learning (ML) methods, for example, random forest (H. Li et al., 2023; Wei et al., 2022),
extreme gradient boosting (XGBoost; S. Liu et al., 2020; Yin et al., 2021), neural network (Di et al., 2017; M.
Wang et al., 2024), and ensemble learning (X. Liu et al., 2022; Requia et al., 2020) have been widely adapted to
estimate O3 concentrations. ML has the advantages of computational efficiency, extraordinary performance, and
high spatiotemporal resolution, which could be a practical supplement to traditional chemical transport models
(CTMs). However, many ML approaches are essentially considered as black boxes, possessing inherent defects
including low interpretability and lack of physicochemical mechanisms (Gilpin et al., 2018).

In this study, impacts of future climate changes on O3 levels across China in 2030 (average of 2025–2034) and
2060 (average of 2055–2064) under both the carbon neutral scenario (SSP1‐1.9) and high emission scenario
(SSP5‐8.5) are predicted using a ML method together with global 3‐D CTM (GEOS‐Chem) simulations and
CMIP6 future climate projections. The individual roles of changing physical and chemical processes of O3 and
changing natural emissions of O3 precursor (isoprene) under climate change are separately quantified. Most
previous studies estimated O3 concentrations directly through ML models, lacking physical and chemical sig-
nificance. In this study, unlike traditional “black box”, the interpretability and understanding of the ML model
regarding physicochemical mechanisms of O3 are creatively enhanced by adding an additional procedure during
the model training and prediction phases, which incorporates the outputs of physical and chemical processes from
GEOS‐Chem.

2. Materials and Methods
2.1. GEOS‐Chem Model Simulations

The goal of this study is to predict future climate‐driven O3 concentrations in China based on ML algorithm with
the consideration of physicochemical mechanisms (Figure 1). Near‐surface O3 concentrations and the related
physical and chemical process outputs for 2000–2019 simulated by the nested version of GEOS‐Chem model
v13.4.1 are used to train and evaluate the ML model (see Text S1 in Supporting Information S1).

Anthropogenic emissions of O3 precursors, including non‐methane VOCs (NMVOCs), NOx and CO from 2000 to
2019 are adopted from the Community Emissions Data System version 2021_04_21 (CEDS v2021_04_21;
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O’Rourke et al., 2021), which provides country‐level emissions that fully take into account China's efforts in
mitigating air pollution since 2010s. Biogenic emissions of NMVOCs are calculated online using the Model of
Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1; Guenther et al., 2012). The biomass
burning emissions are obtained from the Global Fire Emissions Database version 4 (GFED4; van der Werf
et al., 2017). Natural NOx emissions from soil sources are estimated online with an updated version of the
Berkeley–Dalhousie Soil NOx Parameterization scheme proposed by Hudman et al. (2012). NOx emissions
produced by lightning are computed online following the algorithm described by Ott et al. (2010) and Murray
et al. (2012). The methane (CH4) mixing ratios are prescribed based on spatially interpolated monthly average
surface CH4 observations from the National Oceanic and Atmospheric Administration (NOAA) Global Moni-
toring Division (GMD) (Murray, 2016).

2.2. Physical and Chemical Processes of O3

The integrated process rate analysis scheme has been fully embedded in GEOS‐Chem model to identify influ-
ential physical and chemical processes that significantly affect air pollutants (Gong & Liao, 2019; Lou
et al., 2015; Mu & Liao, 2014; Zhou et al., 2022), which has been widely employed to assess the relative
contribution of each process to O3 formation (Gao et al., 2016; L. Li et al., 2012; Yang et al., 2022). The process‐
level contributions are calculated as the differences of O3 concentrations in each model grid cell before and after
the update of corresponding physical and chemical processes. The process rates integrated within the planetary
boundary layer archived from the GEOS‐Chem model are used to train the ML model, which can improve the
interpretability of the physicochemical mechanisms represented in the ML model. In this work, we focus on four
principal processes affecting O3 concentrations in China, including net chemical production (CHEM), horizontal
advection (TRAN), vertical convection (CONV), and dry deposition and diffusion (MIXI) in the planetary
boundary layer. Note that wet deposition is not considered in this study due to its small contribution to the O3

budget (Liao et al., 2006).

2.3. CMIP6 Multi‐Model Climate Projections

Future climate projections under both the carbon neutral scenario and high emission scenario that drive the O3

projections in the ML model are obtained from CMIP6. The CMIP6 repository contains multi‐model climate

Figure 1. Flow diagram of predicting future biogenic isoprene emissions and near‐surface O3 concentrations under climate change using the Extreme Gradient Boosting
(XGBoost) model.
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projections for various Shared Socioeconomic Pathways (SSPs) based on alternative scenarios of future emis-
sions and land use changes (O’Neill et al., 2016). The SSP1‐1.9 scenario is a sustainable development pathway to
keep the global warming below 1.5°C threshold, which has been widely adopted as the carbon neutral scenario
(Sun et al., 2021; P. Wang et al., 2023; Zhang & Chen, 2022). In addition, the SSP5‐8.5 scenario, representing the
high emission pathway, is used to compare with the SSP1‐1.9 results over identical future periods.

We select 8 CMIP6 global climate models (CanESM5, EC‐Earth3‐Veg, FGOALS‐g3, GFDL‐ESM4, IPSL‐
CM6A‐LR, MIROC6, MPI‐ESM1‐2‐LR, and MRI‐ESM2‐0), in which key meteorological parameters for pre-
dicting near‐surface O3 such as air temperature (2 m, 850 hPa, and 500 hPa), wind fields (850 hPa and 500 hPa),
near‐surface wind speed, near‐surface relative humidity, precipitation rate, total cloud cover, incoming shortwave
radiation at the surface, and sea level pressure for both SSP1‐1.9 and SSP5‐8.5 scenarios are provided. In order to
minimize the inconsistencies of initial conditions in CMIP6 models and reanalysis data, the meteorological fields
under future climate in CMIP6 are adjusted by the difference between CMIP6 historical meteorological variables
and MERRA‐2 reanalysis over 2000–2019 following H. Li et al. (2022, 2023).

2.4. Machine Learning Model Prediction

XGBoost is a supervised boosting algorithm that reduces the risk of over‐fitting, captures the nonlinear re-
lationships among predictor variables, and solves numerous data science problems in a rapid and accurate way
(Chen & Guestrin, 2016). It has demonstrated high performance in O3 studies over China (R. Li et al., 2020; R.
Liu et al., 2020). As compared to other bagging tree models like random forest, XGBoost can handle more
complex data while consuming fewer computing resources. It also provides greater interpretability and
computational efficiency than neural networks (Hu et al., 2017). Furthermore, it is less computationally expensive
compared to the CTMs, making it applicable for predicting future O3 in this study. Considering the autocorre-
lation between O3 and covariates changes over space and time series, spatiotemporal information is also added in
the XGBoost model, including month of the year (MOY), and longitude (LON) and latitude (LAT) over the China
domain.

Isoprene emitted by plants accounts for approximately 50% of total BVOCs and exhibits the largest potential for
O3 formation (Guenther et al., 2012). Thus, the XGBoost model is firstly constructed to predict future biogenic
isoprene emissions, which are further utilized in the ML model for predicting future O3 budget. The XGBoost
model for isoprene in this study is trained with biogenic isoprene emissions from the MEGAN2.1 in GEOS‐
Chem, MERRA‐2 meteorological data, land cover (LC), normalized difference vegetation index (NDVI),
topography (TOPO), and population density (POP), LAT, LON, and MOY over 2000–2017, and the data over
2018–2019 are used for testing the model. The details of selected data used in this study are summarized in Table
S1 in Supporting Information S1. The details of parameter tuning are provided in Text S2 in Supporting Infor-
mation S1. The MEGAN is generally integrated in the global and regional models to estimate grided emissions.
Calculating the future isoprene emissions within the coupled model requires high computational resources. The
ML provides an alternative approach to predict isoprene emissions in addition to the traditional MEGAN model,
and is applied here. This method is not only suitable for MEGAN, but also for other biosphere models with more
complex processes.

Secondly, to individually construct the XGBoost model for predicting each O3 budget (CHEM, TRAN, CONV,
MIXI), we gather physical and chemical process rates of O3 from GEOS‐Chem, meteorological parameters from
MERRA‐2 and CMIP6, emissions and concentrations of O3 precursors, and the auxiliary data (LC, NDVI, TOPO,
POP, LAT, LON, and MOY). We select samples in 2000–2017 as training input data set and the remaining data
over 2018–2019 for ML model testing. Then the CMIP6 data is used for future predictions.

Thirdly, we employ the XGBoost model trained by O3 budget to predict monthly near‐surface O3 concentrations
across China under both carbon neutral and high emission scenarios, with special focus on years 2030 and 2060,
when China is expected to reach the carbon peak and carbon neutrality, respectively. To quantitatively analyze the
relative impacts of the direct (changing physical and chemical processes of O3) and indirect (changing natural
emissions of O3 precursors) impacts of future climate change on O3 variations in China, the projections for both
2030 and 2060 are performed under the following scenario: (a) meteorological fields and biogenic isoprene
emissions following the SSP1‐1.9 (M1I1); (b) meteorological fields following the SSP1‐1.9 and biogenic
isoprene emissions following the SSP5‐8.5 (M1I5); (c) meteorological fields and biogenic isoprene emissions
following the SSP5‐8.5 (M5I5); (d)meteorological fields following the SSP5‐8.5 and biogenic isoprene emissions
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following the SSP1‐1.9 (M5I1). By comparing the four sets of O3 projections, the roles of changing physical and
chemical processes of O3 (calculated as ((M1I1–M5I1) + (M1I5–M5I5))/2) and changing biogenic isoprene
emissions (calculated as ((M1I1–M1I5) + (M5I1–M5I5))/2) can be relatively quantified.

To further improve the interpretability of the ML model, the feature importance of independent input variables in
the XGBoost model is quantified using the Shapley Additive explanation (SHAP) approach (Lundberg &
Lee, 2017). The SHAP calculates a value that represents the contribution of each feature to the model's outcome,
which has been successfully applied in atmospheric environmental studies (Hou et al., 2022; Stirnberg
et al., 2021).

3. Results
3.1. The Overall Performance of XGBoost Model

After training the model with data over 2000–2017, the remaining data samples in 2018–2019 are used to assess
the prediction accuracy of the XGBoost model (Figure S1 in Supporting Information S1). The statistical metrics
indicate that the XGBoost model is promising for predicting future O3 levels across China under climate change
(see Text S3 in Supporting Information S1). The SHAP method is applied to estimate the contribution of indi-
vidual input variables to the projections of biogenic isoprene emissions, physical and chemical processes of O3,
and O3 concentrations (Figures S2 and S3 in Supporting Information S1). Among all meteorological variables, the
projections of biogenic isoprene emissions strongly depend on air temperature, exhibiting a positive relationship
(Figure S2a in Supporting Information S1), which is consistent with previous studies (e.g., Singsaas & Shar-
key, 1998). Moreover, the changing human population and massive deforestation would further alter land use,
consequently affecting the functionality of terrestrial biosphere and showing negative impacts on biogenic
isoprene emissions (Rosenkranz et al., 2015).

Temperature, O3 precursor emissions, and solar radiation are the most important drivers that positively influence
the rates of O3 chemical production, while relative humidity is negatively correlated with O3 chemical production
(Figure S2b in Supporting Information S1), as mentioned in previous studies (e.g., Coates et al., 2016). With the
increases in O3 concentrations due to enhanced chemical production facilitated by favorable meteorological
conditions, the O3 dry deposition also increases (Figure S2c in Supporting Information S1). High surface air
temperature and the associated low sea level pressure favor the convective transport of O3 and have a positive
impact on CONV (Figure S2d in Supporting Information S1). Horizontal transport is related to many factors, such
as O3 precursor emissions, temperature, solar radiation, precipitation, wind fields, and topography (Figure S2e in
Supporting Information S1), which is more complex since these factors are interrelated. Among the four pro-
cesses, only the chemical process positively promotes the O3 production in the boundary layer, while other
processes are negatively correlated with O3 concentrations (Figure S3 in Supporting Information S1). This is
because the rise in O3 concentrations is linked to the enhanced chemical production, and higher O3 levels favor
more O3 transport out of the domain in both horizontal and vertical directions, as well as more O3 deposition.

3.2. Responses of Biogenic Isoprene Emissions to Future Climate Change

Biogenic isoprene emissions in 2060 under SSP1‐1.9 are projected to increase compared to 2015 (average of
2010–2019), particularly over eastern China, with a growth rate of 0.1–2.0 g/m2/yr (Figure S4 in Supporting
Information S1). Figure 2 presents the changes in annual average ML‐predicted biogenic isoprene emissions over
China under the SSP1‐1.9 (carbon neutral scenario) compared with SSP5‐8.5 (high emission scenario) in 2030
and 2060. Under the background of achieving carbon peek by 2030, the biogenic isoprene emissions in SSP1‐1.9
are projected to elevate by 0–0.5 g/m2/yr over southern and eastern China, while reduce over western China
compared to SSP5‐8.5. Under the background of achieving carbon neutrality by 2060, biogenic isoprene emis-
sions will significantly decrease across China under SSP1‐1.9, compared to the SSP5‐8.5 scenario, with a
maximum decrease of 0.5–2.0 g/m2/yr over southern China.

Variations in biogenic isoprene emissions are generally determined by meteorological parameters, especially
temperature, as indicated by the feature contribution calculated in the SHAP analysis (Figure S2a in Supporting
Information S1). The changes in meteorological parameters driving the ML model under the SSP1‐1.9, compared
to the SSP5‐8.5, are shown in Figure S5 in Supporting Information S1. In 2030, the surface air temperature
increases in eastern China and decreases in western China (Figure S5a in Supporting Information S1), leading to
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an increase and decrease in biogenic isoprene emissions over these two respective regions. The temperature
increase in eastern China mainly results from the substantial reductions in aerosols, which compensate the cooling
due to the reduced greenhouse gases (P. Wang et al., 2023). In 2060, the decrease in air temperature reduces the
biogenic isoprene emissions. The wet weather conditions are negatively associated with isoprene emission rates,
and the increase in relative humidity over southern China in 2060 (Figure S5e in Supporting Information S1) also
leads to a decrease in isoprene emissions. These results demonstrate that climate following the SSP1‐1.9 scenario
will be more effective than the SSP5‐8.5 in reducing future biogenic isoprene emissions in 2060 when carbon
neutrality is achieved in China.

3.3. Responses of Physical and Chemical Processes to Future Climate Change

Four major chemical and physical processes that contribute to the changes in O3 concentrations over China under
the carbon neutrality (SSP1‐1.9), compared to the high forcing scenario (SSP5‐8.5), are predicted and shown in
Figure 3, including chemical production, dry deposition and diffusion, vertical convection, and horizontal
advection. Among all meteorological parameters, air temperature and downward solar radiation have the most
prominent influence on most processes (Figures S2b–S2e in Supporting Information S1). In 2030, facilitated by
the higher temperature in eastern China and stronger solar radiation across China under SSP1‐1.9, compared to
SSP5‐8.5 (Figures S4a and S4b in Supporting Information S1), more O3 is produced through photochemical

Figure 2. Spatial distributions of differences in climate‐driven biogenic isoprene emissions (g/m2/yr) between SSP1‐1.9 and
SSP5‐8.5 scenarios (SSP1‐1.9–SSP5‐8.5) in (a) 2030 (average of 2025–2034) and (b) 2060 (average of 2055–2064)
predicted by the ML model. The shaded areas indicate that the differences are statistically significant at the 90% confidence
level.

Figure 3. Spatial distributions of differences in ML‐predicted physical and chemical process rates of O3 within the boundary layer (Gg/day), including (a) net chemical
production (CHEM), (b) dry deposition and diffusion (MIXI), (c) vertical convection (CONV), and (d) horizontal advection (TRAN), between SSP1‐1.9 and SSP5‐8.5
scenarios (SSP1‐1.9–SSP5‐8.5) in 2030 (average of 2025–2034, top row) and 2060 (average of 2055–2064, bottom row). The boxed area in the top panel of (a) marks
eastern China (EC, 22–41°N, 107.5–120°E). The shaded areas indicate that the differences are statistically significant at the 90% confidence level. The regional average
over eastern China is shown at bottom left of each panel.
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reactions (0.70 Gg day− 1 in eastern China and hereafter), which is partially offset by the enhanced dry deposition
(− 0.37 Gg day− 1) and horizontal advection (− 0.15 Gg day− 1) related to the increased O3 in the analysis domain.
Compared to 2015, the overall O3 concentrations across eastern China are projected to raise mainly due to a
significant increase in O3 chemical production rate in 2060 under SSP1‐1.9 scenario, followed by the increases in
biogenic isoprene emissions (Figures S6 and S7 in Supporting Information S1). In 2060, associated with the lower
temperature (Figure S5a in Supporting Information S1) under the SSP1‐1.9, compared to SSP5‐8.5 scenario, the
chemical reaction rate of O3 decreases (− 7.73 Gg day− 1), which predominantly influences the changes in O3

concentrations across eastern China. Furthermore, the decline in O3 resulting from the diminished chemical
production also leads to a weakened dry deposition (1.24 Gg day− 1) and an inflow of O3 through horizontal
advection (3.99 Gg day− 1) in 2060.

3.4. Responses of O3 Concentrations in China to Future Climate Change

Figure 4 shows the predicted changes in near‐surface O3 concentrations following the SSP1‐1.9 scenario
compared to SSP5‐8.5, due to changes in physical and chemical processes of O3, along with biogenic isoprene
emissions under climate change. In 2030, a slight temperature increase results in enhanced chemical production,
causing near‐surface O3 concentrations to rise over eastern China under SSP1‐1.9 compared to SSP5‐8.5, with
maximum increase exceeding 0.2 ppb. In 2060, O3 concentrations decrease by more than 0.4 ppb across eastern
China, which are attributed to the weakened chemical production related to the cooling climate under SSP1‐1.9,
as compared with SSP5‐8.5. Changes in biogenic isoprene emissions only cause a small O3 concentration change
(within ±0.1 ppb) over China in 2030. The reductions in isoprene emission in 2060 induce a decline in O3

concentrations by 0.1–0.4 ppb over southern China and 0.1–0.2 ppb over part of northern China. The changes in
O3 driven by physical and chemical processes as well as biogenic isoprene emissions are comparable to those
driven by processes alone, suggesting that changes in physical and chemical processes induced by meteorological
factors under climate change are the major drivers of future O3 variations over China.

Figure 4 summarizes the variations in near‐surface O3 concentrations averaged over eastern China due to changes
in physical and chemical processes of O3, and changes in biogenic isoprene emissions. In 2030, compared with
SSP5‐8.5, climate change under SSP1‐1.9 leads to a 0.13 ppb increase in O3 level, more than 90% of which is
attributed to changes in physical and chemical processes of O3. In 2060, the average concentration of O3 in eastern
China is projected to decrease by 0.52 ppb following SSP1‐1.9 compared to SSP5‐8.5. About 80% of the O3

Figure 4. Spatial distributions of differences in ML‐predicted near‐surface O3 concentrations (ppb) over China in response to (a) changes in physical and chemical
processes of O3 (PROC), (b) changes in biogenic isoprene emissions (ISOP), and (c) both of them (PROC + ISOP) between SSP1‐1.9 and SSP5‐8.5 scenarios (SSP1‐
1.9–SSP5‐8.5) in 2030 (average of 2025–2034, top) and 2060 (average of 2055–2064, bottom). The shaded areas indicate that the differences are statistically significant
at the 90% confidence level. The regional average over eastern China is shown at bottom left of each panel.
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reduction is due to changes in physical and chemical processes of O3, while 20% is due to changes in biogenic
isoprene emissions under climate change, suggesting that the physical and chemical processes play a more
important role than natural BVOCs emissions in regulating O3 concentrations in the future.

4. Conclusion and Discussions
In order to keep the global warming below 1.5°C threshold and reduce the risks of climate change, numerous
countries around the world, including China, have committed to achieving carbon neutrality in the near future.
Climate change would influence O3 pollution in China through changing physical and chemical processes of O3

and natural emissions of O3 precursors. In this study, unlike the traditional “black box” ML models, an inter-
pretable XGBoost model including physical and chemical mechanisms of O3 production, based on multi‐source
data fusion and SHAP method, is established to predict future near‐surface O3 concentrations over China in 2030
and 2060 under carbon neutral scenario (SSP1‐1.9) and high emission scenario (SSP5‐8.5). Biogenic isoprene
emissions and four physical and chemical processes (including net chemical production, horizontal advection,
vertical convection, dry deposition and diffusion) that influence O3 concentrations are firstly predicted by the
XGBoost model. Subsequently, O3 concentrations are further estimated based on these factors. The trained
XGBoost model shows high accuracy with R2 of 0.95 and MRE of 5% between simulated and predicted O3

concentrations in China.

The isoprene emissions are typically linked to climate change, which can further affect O3 concentrations.
Warmer climate, as the primary influential factor, leads to an increase (0–0.5 g/m2/yr) of biogenic isoprene
emissions over eastern China in 2030 under SSP1‐1.9 relative to the SSP5‐8.5 scenario. With decrease of air
temperature and frequent occurrence of wet weather conditions, the isoprene emission rates over eastern China in
2060 under SSP1‐1.9 are projected to decrease (0.5–2 g/m2/yr) compared to SSP5‐8.5. The changes in biogenic
isoprene emissions only cause a minor variation in O3 concentrations (within ±0.1 ppb) over eastern China in
2030. The reductions in isoprene emissions in 2060 induce a decline in O3 concentrations by 0.1–0.4 ppb over
southern China and 0.1–0.2 ppb over part of northern China.

Due to the higher air temperature in 2030 associated with aerosol reductions, the chemical production rates of O3

will be enhanced over eastern China. Consequently, O3 levels are projected to rise, reaching a maximum increase
over 0.2 ppb under SSP1‐1.9 relative to the SSP5‐8.5 scenario. In contrast, associated with lower temperature
under SSP1‐1.9 scenario in 2060, O3 concentrations will dramatically decrease by more than 0.4 ppb across
eastern China mainly due to the weakened chemical production. Changes in physical and chemical processes of
O3 account for the majority of future O3 variations, explaining 80% of the O3 reduction in 2060 under SSP1‐1.9
compared to SSP5‐8.5. Our results suggest that the physical and chemical processes play a more important role
than natural BVOCs emissions in regulating O3 concentrations in the future under the carbon neutral scenario.

In our study, there are several limitations associated with input data for GEOS‐Chem model simulations,
CMIP6 multi‐model simulations, and the XGBoost model, which can result in uncertainties in O3 projections
over China. First, the performance of the trained XGBoost model highly depends on the accuracy of the GEOS‐
Chem model simulations, which is further related to MERRA‐2 reanalysis data, emission inventories, and
physicochemical parameterizations. The GEOS‐Chem model shows notable systematic biases in simulating O3

concentrations compared to observations, with an average bias of 10% over China (Lou et al., 2014), and a bias
of 7.7 ppb (17.5%) across eastern China (Yin et al., 2021). GEOS‐Chem model also overestimates isoprene
levels at most southern sites during the growing season, but underestimates at most northern sites over China
(Zhang et al., 2020). Second, meteorological variables under different scenarios from CMIP6 multi‐model
simulations can also induce biases (Xu et al., 2021). Third, the land use data, topography, and population
density are fixed at a specific year when predicting future O3, which will also vary with climate change and give
rise to prediction biases. Moreover, the dependence and correlation among selected input features used in the
ML model would exert a notable influence on the SHAP values, potentially resulting in spurious explanations
(Silva & Keller, 2024). In addition, it is noteworthy that the performance of XGBoost model is unsatisfactory in
predicting vertical convection of O3, likely related to the low vertical resolution of meteorological variables
adopted in the ML model (e.g., wind fields at 850 hPa and 500 hPa). Further work should fully consider the
impacts of the vertical resolution of wind fields on the vertical transport and mixing of O3 to improve the
model's performance.
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