
1.  Introduction
Dust storms (DSs) have adverse impacts on climate (Liao & Seinfeld, 1998; Sokolik & Toon, 1996), ecosystems 
(Griffin et al., 2001), and human health (Fussell & Kelly, 2021; Ichinose et al., 2008). East Asia is a major source 
of dust aerosol, contributing ∼25% of total annual global dust emissions (Yao et  al.,  2021). The major dust 
sources in East Asia are the Taklimakan Desert (TD) in northwestern China and the Gobi Desert (GD) in southern 
Mongolia and parts of northern and northeastern China (Sun et al., 2001).

DSs occur through the combined effects of surface conditions and meteorological factors. Surface conditions such 
as vegetation cover (Fan et al., 2014; Ji & Fan, 2019; Zou & Zhai, 2004), soil, and topography (Chen et al., 2017; 
Engelstaedter et al., 2003) play important roles in dust emission via sand initiation processes. Meteorological 
factors affect both these processes and the transport of DSs. Wind speed is the dominant factor controlling 
the frequency of DSs (Lee & Sohn, 2009; Xu et  al.,  2020). The observed decreasing trend in DS frequency 
over northern China since the 1970s has been attributed to decreasing surface wind speed (Ding et al., 2005; 
Guan et al., 2017; Zhao et al., 2004). Other factors, such as temperature (Yin et al., 2021), precipitation (Liu 
et al., 2004), soil moisture (Yao et al., 2021), and evaporation (Shi et al., 2020), indirectly affect dust emissions 
by changing the subsurface and dust source conditions. For example, low precipitation and strong evaporation in 
Mongolia produced dry soil and exiguous vegetation during the spring of 2021, leading to severe DSs in northern 
China (Yin et al., 2021). DSs occur under various synoptic-scale systems. Earlier studies have found that Mongo-
lian cyclones, cold fronts, and cold highs (Huang et al., 2013; Meng et al., 2019; Yin et al., 2021) are the major 
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weather systems driving outbreaks of DSs over northern China. It is critical to identify which synoptic system is 
responsible for dust storms in different subregions.

Observational evidences indicate a remarkable decrease in the frequency of spring DSs in northern China since 
the 1950s (Guo et al., 2018; Qian et al., 2002; Zhu et al., 2008), but the outbreak of a super DS in northern China 
during spring 2021 raised concerns as to whether East Asia has entered a period of high-frequency DSs. It is 
therefore important to project future changes in DS occurrence, although climate change has added complexity to 
the issue, with simultaneous changes in meteorological factors and dust source conditions under global warming 
scenarios. Current future projections focus mainly on dust emissions (Wu et al., 2018; Zong et al., 2021), but 
state-of-the-art climate models participating in CMIP5 and CMIP6 (Climate Models Intercomparison Project 
phase five/six) are still unable to simulate dust aerosol loadings well for northern China (Pu & Ginoux, 2018; 
Zhao et al., 2022). For example, Wu et al. (2018) found that the observed trend in dust event frequency from 1961 
to 2005 over East Asia could not be reproduced in CMIP5 models. Other studies have focused on future changes 
in dust source conditions. Huang et al. (2016) projected an expansion of dryland coverage over northern China 
under a future global warming scenario, indicating worse dust source conditions and more dust storms. However, 
current prediction research on dust events is relatively lacking. Global climate models rely on many meteorolog-
ical variables, can be adopted to link DS occurrence to associated synoptic systems for a single process that can 
be projected under climate change.

Here, using daily DS records for northern China and K-means method, we aim to (a) cluster different DS types and 
investigate their driving synoptic systems; (b) identify the predominant DS type influencing northern China; and 
(c) project its future changes based on climate models participating in CMIP6 under climate-change scenarios.

2.  Data and Methods
2.1.  Meteorology Data, PM10 Observations, Normalized Difference Vegetation Index, and Aerosol 
Optical Depth

In situ observations of surface meteorological variables were obtained from the US National Climatic Data 
Center (NCDC; https://www.ncei.noaa.gov/data/global-hourly/access/; last accessed 22 April 2022), with wind 
speed at 10 m, air temperature at 2 m, and horizontal visibility being available for 174 sites (Figure S1 in Support-
ing Information S1) over northern China.

Daily meteorological variables, including 500 and 850 hPa geopotential heights, zonal and meridional wind speeds 
at 500, 850 hPa, and 10 m, and mean sea-level pressure, were obtained from the fifth generation of European 
Center for Medium-Range Weather Forecasts atmospheric reanalyses of the global climate (ERA5) (Hersbach 
et al., 2020) with a spatial resolution of 1° × 1°. Hourly PM10 (particulate matter of <10 μm size) concentrations 
were obtained from the Chinese Ministry of Ecology and Environment (http://106.37.208.233:20035/), with data 
from continuous measurements at 1500+ sites in 368 major cities in China being available. The quality control 
and daily average PM10 were processed based on the following steps: (1) negative or missing values are excluded 
from the data; (2) an observation site with less than 80% valid data since the beginning of continuous observa-
tions is eliminated; (3) the daily mean PM10 concentration of the city is calculated only when there were more 
than 16 hr of valid data during that day (J. Li, Hao, et al., 2021; J. Li et al., 2019).

To investigate the relationship between DS and dust source regions, gridded monthly Normalized Difference 
Vegetation Index (NDVI) datasets with a spatial resolution of 1° × 1° were obtained from https://lpdaac.usgs.
gov/products/mod13c2v006/.

Daily mean aerosol optical depth (AOD) data with a spatial resolution of 1° × 1° from Level 3 Moderate Reso-
lution Imaging Spectroradiometer Atmosphere Daily Global products (https://ladsweb.modaps.eosdis.nasa.gov/
search/) were used in studying the temporal evolution of DSs.

2.2.  Dust Storm Definition

The China Meteorological Administration defines a DS event as occurring when visibility is <1 km on an hourly 
basis. Here, visibility data from 1979 to 2012 were multiplied by 0.766 to correct for the change from manual 
observation to automatic monitoring since 2013 (H. Li, Yang, et al., 2021; Pei et al., 2018). Additional criteria 
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were also set with relative humidity <80%, wind speed >3 m s −1, and precipitation = 0 to exclude other meteor-
ological phenomena (e.g., fog, haze, rain) that reduce visibility.

2.3.  K-Means Algorithm

To identify the predominant DS type that influences air quality over northern China, the K-means algorithm 
was used to cluster DS events that occurred during the spring season of March–April–May (MAM) during 
1979–2021. This method has been widely applied in studies of extreme events, including heat waves (Agel 
et al., 2021), extreme precipitation (He et al., 2021), and air pollution (Chang & Zhan, 2017).

For each site, daily sample values were set to 1 when a DS occurred that day, and 0 for non-DS days. The 174 sites 
were permuted to a 0–1 two-dimensional array (site vs. time) for clustering. Synoptically driven DSs in northern 
China influence large territories, so daily samples for at least three sites at which a DS occurred were considered 
for clustering, with 632 daily samples being assigned to specific number clusters by the K-means algorithm. To 
optimize the classification, a set of classification configurations with numbers of 2–7 was considered, with the 
two-type configuration being identified as being optimal by Monte Carlo simulation; more meaningful types 
could not be identified through more classification (Figures S2–S6 in Supporting Information S1). For details of 
the K-means clustering and Monte Carlo tests, see the Supporting Information S1.

2.4.  Mongolian Cyclone Index

In the following analysis, we found that the Type 1 DSs were driven by the Mongolian cyclone. Hence, we applied 
three meteorological proxies (geopotential height at 850 hPa, Z850; zonal wind at 10 m, U10; and meridional 
wind at 10 m, V10) to construct a Mongolian Cyclone Index (MCI) to investigate future changes in the MCI under 
climate change. The Z850 proxy represents the intensity and position of Mongolian cyclones (Qian et al., 2002; 
Zhu et  al.,  2008), while U10 and V10 indicate the corresponding near-surface winds identified as the most 
important factors in modulating the outbreak of Asian dust (Lee & Sohn, 2009). Regional averages were used 
to create daily time series for meteorological proxies Z850, U10, and V10, which were determined by the most 
significant anomalies in dust storm composites. Following Cai et al. (2017), we normalized each time series by 
its respective standard deviation and summed the three normalized time series to construct a single MCI. Due to 
intra-seasonal variations in spring circulation over East Asia, the MCI was established separately for each month 
of March, April, and May. In the future projection section, we removed the thermal dilation of Z850 caused by 
tropospheric warming by subtracting zonal annual means from daily-scale Z850 fields (Zhang et al., 2021) to 
focus on circulation changes under climate change. To enable a direct comparison, daily Z850, U10, and V10 
values were obtained using daily anomalies referenced to the historical 30-year (1981–2010) daily mean, normal-
ized by the historical standard deviation.

2.5.  CMIP6 Climate Data

18 CMIP6 model runs (Table S1 in Supporting Information S1) were undertaken where daily outputs of Z850, 
U10, and V10 were available. We considered two experiments based on SSP126 and SSP585 (Shared Socioec-
onomic Pathway 1–2.6 and 5–8.5). The SSP126 scenario, with an additional radiative forcing of 2.6 W m −2 in 
2100, assumes climate mitigation measures being taken to simulate development compatible with limiting the 
temperature increase to 2°C (Riahi et al., 2017). The SSP585 scenario corresponds to the RCP85 scenario in 
CMIP5, with an anthropogenic radiative forcing of 8.5 W m −2 by 2100, with a 5°C temperature increase (Riahi 
et al., 2017).

3.  Results and Discussion
3.1.  DS Types Over Northern China and Associated Weather Conditions

The spatial distribution of composited DS frequencies for 1979–2021 is shown in Figure 1a for T1 and T2 DSs, 
which account for 18.7% and 81.3% of the 632 spring dust storms (Figure 2a), respectively. Significantly clus-
tered sites of a specific type indicate their co-variability in DS outbreaks (Figure 1a), perhaps involving the same 
weather system. For T1 DSs, high frequencies occurred over northern China, from the western Inner Mongolia 
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Autonomous Region to eastern Hebei Province. These DS “hotspots” were located around the GD (Figure S1 in 
Supporting Information S1). For T2 DSs, high frequencies occurred over northwestern China, with dust particles 
being sourced mainly from the TD (Figure S1 in Supporting Information S1), the largest desert in China.

A DS can reduce surface air quality by increasing the concentrations of PM10 (Figure 1b). For T1 DSs, the mean 
PM10 concentrations in most regions of northern China were in the range of 200–500 μg m −3, while T2 DSs had 
a major impact on the air quality over only northwestern provinces. The evolution of AOD during T1 and T2 
DSs is illustrated in Figure 1c from 1 day before the DS event (lag−1 day) until 2 days afterward (lag + 2 days). 
AOD for both T1 and T2 DSs peaked 1 day after the outbreak, before dissipating over 2 days. For T1 DSs, high 
AOD occurred from northeastern to central China, and for T2 DSs it occurred locally around dust source regions.

Monthly occurrences of T1 and T2 DSs for the period 1979–2021 are shown in Figures 2b and 2c. For T1, the 
frequency was the highest in April (63 events), followed by March (31) and May (24). For T2, the frequency was 
highest in April (202), followed by May (168) and March (144). During 1979–2021, there were no significant 
frequency trends for T1 DSs, but the T2 DSs showed a significant (p < 0.01) annual decrease of 4.2 events per 
decade (Figure 2f). Regarding DSs in 2021 (Figures 2a and 2d), the extremely high PM10 levels of northern China 
were associated with T1 DSs. The four spikes (March 15, March 28, April 16, and May 7) in PM10 concentrations 
were observed after the outbreak of T1 DS. Considering the strong temporal linkage and wide-ranging impact on 
air quality over northern China, the T1 type is inferred to have the greatest influence on air quality over the region.

Based on the clustering category shown in Figure 2a, we undertook composite analyses of the typical synop-
tic systems responsible for T1 and T2 DSs. Composites of geopotential height anomalies at 500 and 850 hPa, 
sea-level pressure anomalies, and associated wind anomalies are shown in Figure 3. From the mid-troposphere to 
the surface, strong cyclonic anomalies were observed over Mongolia and Inner Mongolia during the T1 DS, indi-
cating the strong impact of the Mongolian cyclone (a mid-latitude cyclonic system over the region of 40°–50°N, 
100°–115°E). With the eastern–southeastern migration of the cyclone, strong northwesterly winds following it 
were favorable for the outbreak of the DS when passing over the GD. During the T2 DS, significant wind shear 

Figure 1.  Composites of (a) frequency (days) and (b) mean PM10 concentrations (μg m −3) during spring dust storms (DSs) over China during 1979–2021, based on 
K-means clustering (k = 2). (c) Evolution of aerosol optical depth (AOD) for the periods from 1 day before a DS event until 2 days after. Dots with blue circles in (a) 
indicate sites exceeding the 95% significance level (Monte Carlo test).



Earth’s Future

LI ET AL.

10.1029/2022EF002649

5 of 11

at around 40°N latitude indicates the occurrence of a cold front (Figures 3d and 3f). The atmospheric pressure 
difference between southern warm air and northern cold air induced strong wind anomalies at the surface, raising 
dust from the TD into the atmosphere (Figure 3f).

3.2.  Future Projections

Guided by the composited anomalies during T1 DSs, the daily meteorological field (averaged over the area 
indicated by blue and red rectangles in Figures  4a–4c) was used to generate time series for Z850, U10, and 
V10 (the Z850 and V10 time series were multiplied by −1 for convenience). The MCI was then constructed 
accordingly and was evaluated in several ways. In March (Figure 4) and April (Figure S7 in Supporting Informa-
tion S1), MCI values of 80% and 62% for T1 DSs exceeded 1.8σ (Figures 4d) and 1.5σ (Figure S7d in Supporting 

Figure 2.  (a) Classified spring dust storm (DS) events during 1979–2021. (b), (c) Interannual variations in DS frequency for each month in spring for T1 and T2 
DSs. (d) Evolution of PM10 concentrations averaged over the North China Plain [i.e., the area outlined by the blue rectangle in (e)] and northern China [red rectangle 
in (e)] during spring in 2021. (e) Spring mean PM10 concentrations in 2021. (f) Long-term variations in the frequency of T1 and T2 DSs during spring for the period 
1979–2021. Dashed lines indicate linear regression trends; p-values denote statistical significance (Student's t-test).
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Information S1), respectively (σ = standard deviation of the daily MCI during 1979–2021). For the whole period 
1979–2021, the annual frequency of MCI values exceeding 1.8σ and 1.5σ may represent interannual variations 
in T1 DSs, with correlation coefficients of 0.70 and 0.65 for March and April, respectively (significant at the 
99% level). We undertook the same analysis in May but found MCI alone could not well explain variations in 
T1 DSs (Figure S8 in Supporting Information S1). Mean NDVI values in May during 1979–2021 (Figure S9 in 
Supporting Information S1) increased significantly relative to March and April. A greater surface roughness due 
to higher vegetation coverage has been suggested to reduce friction velocity and thus restrain the outbreak of DSs 
(Mao et al., 2013). Earlier vegetation phenology under global warming (Fan et al., 2014) adds more uncertainty to 
future projections of May DSs. Considering the lowest occurrence (20%) of DSs in May, the impact of vegetation 
cover, and the complexity of phenology shifts under global warming, future changes in T1 DSs occurrence for 
only March and April were considered here.

Under the SSP585 scenario, 67% (12 of 18) of models projected increasing trends in the frequency of T1 DSs (MCI 
>1.8σ) in March (Figure S10a in Supporting Information S1). Aggregated over the 18 models, a weak (P = 0.09) 
increasing trend during 2020–2100 was obtained, with 0.03 days increase in T1 DSs per decade  (Figure 5a). 
For April, the frequency of strong Mongolian cyclones decreased markedly, with the decreasing trend in T1 
DS occurrence in April being −0.1  days per decade for 2020–2100 under the SSP585 scenario (Figure  5b). 
This result is supported by a strong inter-model consensus, with 89% (16 of 18) of models indicating decreased 
frequencies of T1 DSs (Figure S10b in Supporting Information S1). Considering that the decreasing trend in 
April is greater than the increasing trend in March, with T1 DSs occurring most frequently in April, we conclude 
that the frequency of spring DSs affecting northern China will decline under global warming.

With the implementation of carbon-neutral policies and a pledge to achieve net-zero CO2 emissions by 2060, 
China is likely to follow the SSP126 scenario, under which T1 DS frequencies in both March and April exhibited 
no significant trends but rather fluctuated with decadal variability. The T1 DS frequency in March is projected 
to decrease from 2020 to 2040, after which it will increase to peak at around 2060 (Figure 5c). For April, there 

Figure 3.  Weather conditions for the two dust storm (DS) types, T1 and T2. Composited anomalous weather patterns of (a), (b) geopotential height (m, shading) and 
winds (m s −1, vectors) at 500 hPa; (c), (d) geopotential height (m), and winds (m s −1) at 850 hPa; and (e), (f) sea-level pressure (hPa, shading) and winds (m s −1) at 
10 m. All anomalies are relative to the daily climatology over 1981–2010. White dots indicate that the circulation changes are significant at the 99% confidence level 
(Student's t-test).
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is a slight increase before 2025, with T1 DSs entering a low-frequency period during 2025–2055, followed by a 
relatively high-occurrence period during 2055–2085 (Figure 5d).

3.3.  Discussion

The two DS types exhibit significant differences in both long term trend and spatial pattern of the occurrences of 
DS. Although there is a consensus on the decreasing trend of DSs in northern China over the past decades (Guo 
et al., 2018; Qian et al., 2002; Zhu et al., 2008), our findings suggest that T1 DSs induced by Mongolian cyclone 
has no trend, and hence T2 DSs are primarily responsible for the declining trend of DSs in northern China. Such 
conclusion is supported by Zhu et al.  (2008), who applied the Empirical Orthogonal Function analysis to the 
spring DS frequency during 1954–2007 and found no significant trend for the second leading mode (similar to 
our T1 DS characterized by high DS frequency in the Inner Mongolia). Compared to T2 DS from the TD, T1 
DS has lower frequency of occurrence but plays a dominant role in the deterioration of air quality over northern 
China. T2 DSs are mainly from the TD, located in the Tarim Basin with its three sides surrounded by the moun-
tains. Owing to its unique geography, the relatively weak easterlies at the surface could not easily transport TD 
dust particles outside the Tarim Basin (Chen et al., 2017). On the contrary, the terrain of the GD is mainly flat and 
high in elevation, and it is influenced by jet streams, which result in strong wind speeds in the upper atmosphere. 
The downward momentum transportation produced by the strong westerly jet with deep convective mixing can 
result in strong surface winds and low-level cyclogenesis and frontogenesis; Under these favorable conditions, 
the T1 DSs are likely to occur and are easily transported to downwind areas (Chen et al., 2017; Fan et al., 2018). 

Figure 4.  Composited anomalies of (a) geopotential height at 850 hPa (Z850), (b) zonal winds at 10 m (U10), and (c) meridional winds at 10 m (V10) during T1 DSs 
in March for the period 1979–2021. (d) Daily Mongolian Cyclone Index (MCI) in March based on Z850, U10, and V10 for 1979–2021. The dashed rectangles in (a)–
(c) are selected regions to calculate time series for Z850, U10, and V10. The purple markers in (d) indicate T1 DS records and the purple dashed line denote the 1.8σ 
threshold.
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Therefore, the Mongolian cyclone driven T1 DSs from the GD have significant impacts on surface air quality 
over northern China.

Future trends of T1 DS occurrences differ between two future scenarios, with SSP585 showing a declining trend 
and SSP126 showing decadal variability. It is likely that climate-change effects on future DSs will be regulated 
by the amplitude of global warming. The SSP126 scenario is more likely to happen than the SSP585 scenario 
because of the proposed carbon-neutral policy (Liu et  al.,  2021), despite the fact that the SSP126 scenario’s 
net-zero carbon emission is predicted to occur later than 2060. Therefore, future predictions of spring DSs should 
consider decadal variability as China takes the carbon-neutral path. It is also worthwhile to explore why the 
frequency of T1 DSs is decreasing under the SSP585 scenario. Several studies have revealed that the westerly jet 
stream (Chen et al., 2017; Zhu et al., 2008) and warming in the Mongolian Plateau (Qian et al., 2002) had signifi-
cant impacts on the frequency of Mongolian cyclones. Zhu et al. (2008) demonstrated that the increases in surface 
air temperature in the region of 70–130°E, 45–65°N could reduce the number of Mongolian cyclones by inducing 
a weak westerly jet stream and weak atmospheric baroclinicity in northern China. We therefore investigated the 
future warming trends of surface air temperature under the SSP585 scenario and found large positive trends over 
the Mongolian Plateau for the years of 2020–2099 (Figure S11 in Supporting Information S1), which may explain 
in part the decreasing trend of T1 DSs frequency under the SSP585 scenario. For comparison, more than half 
of the models show no significant warming trends under the SSP126 scenario, while four models even predict 
cooling trends. These model discrepancies are inferred to contribute to the insignificant trend of DS frequency 
under the SSP126 scenario (Figure S12 in Supporting Information S1).

Figure 5.  Future changes of dust storm (DS) frequency in March (a), (c) and April (b), (d) based on climate models under the SSP585 (a), (b) and SSP126 (c), (d) 
scenarios. Gray lines and shading indicate historical simulation frequencies for 1979–2015; red lines and shading indicate future variations for 2016–2100; green 
dashed lines indicate linear trends based on linear regression for 2020–2099; pale blue lines in insets indicate the 11-year moving average.
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Apart from synoptic systems, the conditions of dust sources, particularly vegetation coverage, are also important 
factors in the occurrence of DSs. For example, DS frequency is the lowest in May due to more vegetation cover-
age over the dust storm region as compared to March and April (Figure S9 in Supporting Information S1). It was 
also reported that the frequency of spring dust storms in China had a higher correlation with NDVI in the previ-
ous summer than that in the spring of current year (Zou & Zhai, 2004). We therefore investigated the potential 
correlation between NDVI and T1 or T2 DSs during MAM and the preceding seasons of December–February, 
September–November, and June–August (Figure S13 in Supporting Information S1). A weak correlation is found 
between NDVI and T1 DSs, suggesting that the T1 DSs driven by Mongolian cyclone are more susceptible to 
synoptic systems than to dust source conditions. As for T2, no correlations are identified over the TD, whereas 
significantly negative correlations exist over the western GD (or the Hexi Corridor). Because the TD is a nonveg-
etated desert with fine dust particles, the occurrences of spring DSs are unrelated to the vegetation. The negative 
correlations in western GD indicate NDVI play a non-negligible role in DS occurrence despite the influence of 
cold front. In addition to the mean vegetation coverage during dust season, earlier vegetation growth in spring 
may have a dampening impact on DS frequency in Inner Mongolia (Li et al., 2015), and such effects are likely to 
play important roles, given the observation of earlier spring phenology associated with winter and spring warm-
ing (Piao et al., 2019). Therefore, the earlier onset of vegetation green-up in a warming climate may suppress the 
development of DSs. It should also be noted that global warming may bring in more intensive synoptic systems. 
Extreme DSs are likely to occur under these weather conditions, especially if they coincide with favorable dust 
source conditions. For example, the lowest vegetation coverage and the second strongest Mongolian cyclone 
among recent decade in spring 2021 contributed to the super DSs on 15 March 2021 in northern China (Yin 
et al., 2021). Such dual effect of climate change on DS occurrence should be further studied.

4.  Conclusion
Based on K-means clustering, two DS types were identified from 632 spring dust events in northwestern and 
northern China, accounting for 18.7% and 81.3% of events, respectively. T1 DSs, generated mainly in the GD, 
is identified as the predominant DS type influencing air quality in northern China. T2 DSs influence mainly 
northwestern China. During 1979–2021, T1 DSs displayed no significant trends in the frequency of occurrence, 
while T2 DSs exhibited a decreasing trend at a rate of 4.2 events per decade. The major synoptic systems driving 
T1 and T2 DSs are Mongolian cyclones and cold fronts, respectively. MCI were established to track interannual 
variations in T1 DS frequency, with T1 DSs projected to decrease during 2020–2100 under the SSP585 scenario. 
No significant trends were detected for the frequency of T1 DSs under the SSP126 scenario, but decadal varia-
bility associated with the mitigation of global warming may have import implications for future DS prediction.

Data Availability Statement
Surface meteorological observations were obtained from https://www.ncei.noaa.gov/data/global-hourly/access/. 
PM10 observations were obtained from http://106.37.208.233:20035/. The ERA5 reanalysis data are available 
at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form and https://cds.
climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form. Aerosol optical depth from 
Moderate Resolution Imaging Spectroradiometer aerosol products were obtained from https://ladsweb.modaps.
eosdis.nasa.gov/search/. CMIP6 outputs are available from https://esgf-node.llnl.gov/search/cmip6/.
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