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A B S T R A C T   

The health impact of changes in particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) pollution 
associated with the COVID-19 lockdown has aroused great interest, but the estimation of the long-term health 
effects is difficult because of the lack of an annual mean air pollutant concentration under a whole-year lockdown 
scenario. We employed a time series decomposition method to predict the monthly PM2.5 concentrations in urban 
cities under permanent lockdown in 2020. The premature mortality attributable to long-term exposure to 
ambient PM2.5 was quantified by the risk factor model from the latest epidemiological studies. Under a whole- 
year lockdown scenario, annual mean PM2.5 concentrations in cites ranged from 5.4 to 68.0 μg m− 3, and the 
national mean concentration was reduced by 32.2% compared to the 2015–2019 mean. The Global Exposure 
Mortality Model estimated that 837.3 (95% CI: 699.8–968.4) thousand people in Chinese cities would die pre
maturely from illnesses attributable to long-term exposure to ambient PM2.5. Compared to 2015–2019 mean 
levels, 140.2 (95% CI: 122.2–156.0) thousand premature deaths (14.4% of the annual mean deaths from 2015 to 
2019) attributable to long-term exposure to PM2.5 were avoided. Because PM2.5 concentrations were still high 
under the whole-year lockdown scenario, the health benefit is limited, indicating that continuous emission- 
cutting efforts are required to reduce the health risks of air pollution. Since a similar scenario may be ach
ieved through promotion of electric vehicles and the innovation of industrial technology in the future, the 
estimated long-term health impact under the whole year lockdown scenario can establish an emission–air 
quality–health impact linkage and provide guidance for future emission control strategies from a health pro
tection perspective.   

1. Introduction 

By March 2021, coronavirus disease 2019 (COVID-19) had swept 
across 223 countries and territories, becoming a global pandemic and 
causing more than 4.33 million deaths globally (https://www.who. 
int/emergencies/diseases/novel-coronavirus-2019, last access on 16 
August 2021). Governments around the world have implemented pre
vention and control measures to reduce COVID-19 infections, such as the 

modification of consumption patterns, restrictions on large public 
gatherings, and even the lockdown of cities (Feng et al., 2020; Wu and 
McGoogan, 2020). Inadvertently, these drastic reductions in human 
activities caused unprecedented reductions in global emissions of 
greenhouse gas (Le Quéré et al., 2020) and air pollutants (Chauhan and 
Singh, 2020). 

The effects of the lockdown on air pollution in China have been 
widely reported in previous studies. It was estimated that emissions of 
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sulfur dioxide, nitrogen oxide, carbon monoxide, non-methane volatile 
organic compounds, and primary PM2.5 (particulate matter with an 
aerodynamic diameter <2.5 μm) decreased by 24–36% in February 2020 
compared to the same month in 2019, and industry and transportation 
were dominant contributors (Zheng et al., 2021). Satellite observation 
revealed an approximately 40% decrease in averaged nitrogen dioxide 
(NO2) column over 16 Chinese cities (Bauwens et al., 2020), and the 
surface NO2 concentration dropped dramatically by approximately 60% 
in northern China, with slightly lower reductions in carbon monoxide 
and sulfur dioxide (Shi and Brasseur, 2020). The surface PM2.5 con
centration decreased by approximately 35% in northern China during 
the lockdown relative to that in the same period in 2019 (Shi and 
Brasseur, 2020). The lockdown can be considered as an ideal experiment 
about the air pollution mitigation that can be achieved through cutting 
traffic and industrial emissions, and therefore, investigating the associ
ated health impact is worthwhile. 

Exposure to ambient PM2.5, which partly contributes to the mortality 
rates from nonaccidental and cause-specific diseases, poses a serious 
public health hazard (Akhbarizadeh et al., 2021; Al-Hemoud et al., 
2019; Cohen et al., 2017; Cooke et al., 2007; Faraji Ghasemi et al., 
2020). Long-term exposure to ambient PM2.5 is the fourth leading risk 
factor for mortality in the Chinese population (Yang et al., 2013) and led 
to 1255.4 thousand premature deaths in 2010 (Xie et al., 2016). The 
sudden reduction in PM2.5 concentrations during the quarantine period 
between February 10 and March 14, 2020 prevented a total of 3214 
premature deaths (95% CI: 2340–4087) in 367 Chinese cities (Chen 
et al., 2020). It is estimated that 24.2 (95% CI: 22.4–26.0) thousand 

premature deaths were averted in China between February 1 and March 
31 (Giani et al., 2020b). However, the reduced rate of mortality from 
long-term exposure to PM2.5 caused by this unprecedented decline in its 
concentration was limited and challenged by the following: 1) the 
COVID-19 lockdown was a short-term emergency, which did not cover 
the whole year in China; and 2) emissions quickly rebounded to 
pre-pandemic levels in response to the fast economic recovery (Zheng 
et al., 2020). 

This study aimed to investigate to possible extent of the long-term 
health impacts due to the unprecedented reduction in anthropogenic 
emissions during lockdown. We used observational data of PM2.5 
collected at more than 1500 monitoring sites from 2015 to 2020 and a 
time series decomposition approach to predict the annual mean PM2.5 
concentrations in 2020, assuming that the pandemic restrictions per
sisted throughout the whole of 2020. The premature mortality rates 
associated with long-term exposure to ambient PM2.5 under this scenario 
were estimated. Our result could establish an emission–air qual
ity–health impact linkage, providing guidance for future emission con
trol strategies from a health protection perspective. 

2. Methods 

2.1. p.m.2.5 observations and population data 

The observational data for PM2.5 from January 2015 to March 2020 
were obtained from the Chinese Ministry of Ecology and Environment 
website (http://106.37.208.233:20035/). To ensure the continuity and 

Fig. 1. Spatial distribution of observed surface PM2.5 concentrations (leftmost column; unit: μg m− 3), reconstructed surface PM2.5 concentrations (the second column; 
unit: μg m− 3), and differences between the observed data and reconstructed data (the third column; unit: μg m− 3) from 2015–2019. Rightmost column shows the 
seasonal variations in the urban PM2.5 concentrations over China obtained from observed (red) and reconstructed (black) data; data points show the mean values for 
urban PM2.5 concentrations, and error bars show the upper (2.5%) and lower (97.5%) quartiles. 
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availability of the data, the daily average PM2.5 was preprocessed as 
described in a previous study (Li et al., 2019). The annual average urban 
population data for 2015–2018 were obtained from the China City 
Statistical Yearbook 2016–2019. Because of data availability, the urban 
populations during 2019–2020 were the same as those in 2018. The 295 
prefecture-level cities with both PM2.5 observations and populations are 
shown in Fig. 1a. 

2.2. Time series decomposition 

A time series can usually be split into four components (trends, cy
cles, seasonality, and remainder) to improve its predictive accuracy. We 
used a multiplicative decomposition because there is an obvious sea
sonal cycle in the PM2.5 concentrations, which varies with the level of 
the time series. This was written as (Hyndman, 2018): 

Ct = Tt × CYt × St × Rt (1)  

where Ct is the monthly PM2.5 concentration data for one city; Tt is the 
trend component; CYt is the cycle component; St is the seasonal 
component; and Rt is the remainder component. To obtain these com
ponents, a classical method of time series decomposition was used:  

(i) The moving average of order m (MAt) was calculated. In the first 
step, we used a moving average method to estimate the trend- 
cycle component (Tt × CYt), a moving average of order m 
(m = 12 for monthly data), which can be written as: 

MAt =
1
m

∑
m
2

j=− m
2

Ct+j (2) 

Using the average eliminates the seasonal variability and random
ness in the data, leaving a smooth trend-cycle component.  

(ii) In the second step, we estimated the seasonal component and 
remainder component (St × Rt) for each month, as: 

St × Rt =
Ct

MAt
(3) 

These values were then adjusted to ensure that the seasonal com
ponents of each summed to m (m ​ = 12 for monthly data).  

(iii) In the third step, we estimated a smooth seasonal component for 
each month. Because of the occasionality, randomness, and 
disturbance around the value 0 for the remainder component, Ŝt 
can be calculated as the average of St × Rtin the same month.  

(iv) We calculated the remainder component (R̂t ) as: 

R̂t =
Ct

T̂t × Ŝt
(4) 

In short-term predictions, this component and its effect on any pre
diction are negligible. 

The Tt can represent emission trends, while the cycle component CYt 
indicates multi-interannual variations in meteorology. The seasonality 
St includes both seasonal variations in meteorology and emissions. We 
considered the “anthropogenic” trends of emission reductions during 
COVID-19 lockdown and “natural” trends from meteorology. The sea
sonality, as a constant parameter, was learned from historical observa
tions in the period of 2015–2019. 

We decomposed MAt for each month in 2015–2019 and Ŝt for the 12 
months of the year. Thus, the monthly surface PM2.5 concentrations in a 
city were briefly determined as: 

C*
t =MAt × Ŝt (5) 

We found minimal changes in MAt in the period 2015–2019. 
Therefore, the hindcast PM2.5 concentration was briefly described as: 

C*
t =MAt × Ŝt (6)  

where MAt was the moving average of MAt in one year. In Februar
y–March 2020, almost all the cities were under strict pandemic control. 
Using seasonal components, we inversely calculated the preventive 
MA ​ in February and March 2020 and assumed that it was stable 
throughout the whole year. Then, the monthly PM2.5 concentrations in 
cities were predicted using the preventive MA and Ŝt during lockdown in 
2020. 

2.3. Premature mortality attributable to long-term exposure to ambient 
PM2.5 

The premature mortalities attributable to long-term exposure to 
ambient PM2.5 were predicted with the following equation (Apte et al., 
2015): 

ΔMortalityi,j = y0j ×

(
RRj(Ci) − 1

RRj(Ci)

)

× Popi (7)  

where ΔMortalityi,j is the premature mortality caused by exposure to 
PM2.5 in city i for the endpoints of disease j; y0j is the baseline mortality 
rate for disease j; Popi is the exposed population in city i; Ci is the annual 
mean ambient PM2.5 (μg m− 3) concentration in city i; and RRj (Ci) is the 
relative risk function for the disease j endpoints associated with the 
relative change in the PM2.5 concentration Ci. ΔMortality in one year was 
determined by summing it over all disease j endpoints for all cities i. The 
baseline mortality rate y0 is the number of cause-specific and age- 
specific deaths divided by the country-level population (Table 1), 
based on the latest Global Health Estimates (2016) obtained from the 
World Health Organization (World Health Organization, 2018) and the 
population structure data of China (Population pyramid of China, 
2015–2018 from the United Nations Department of Economic and Social 
Affairs, 2019). 

We used two different RR(C) models, including the integrated 
exposure-response model (IER; Burnett et al., 2014) and the Global 
Exposure Mortality Model (GEMM; Burnett et al., 2018). The PM2.5-at
tributed IER was constructed for the disease j endpoint, including lower 
respiratory infections (LRI; for children <5 years), lung cancer (LC) and 
chronic obstructive pulmonary disease (COPD; for adults >25 years), 
and ischemic heart disease (IHD) and stroke (for adults >25 years and 
age-specifically). For disease j, the IER for ambient PM2.5 concentrations 
above C0 (range: 5.8–8.0 μg m− 3) was defined as: 

RRj(Ci)= 1+α × [1 − exp( − γ ×(Ci − C0)
δ
)] (8) 

Table 1 
Age-specific baseline mortality rates (%) in China. COPD = chronic obstructive 
pulmonary disease; LC = lung cancer; LRI = lower respiratory infections; IHD =
ischemic heart disease; NCD = noncommunicable disease.  

Age group (years) Baseline mortality rates caused by specific diseases (%) 

COPD LC LRI IHD Stroke NCD + LRI 

0–4 – – 0.24 – – 0.78 
25–29 – – – 0.02 0.02 0.20 
30–34 0.02 0.07 – 0.13 0.14 0.98 
35–39 0.02 0.07 – 0.13 0.14 0.98 
40–44 0.02 0.07 – 0.13 0.14 0.98 
45–49 0.02 0.07 – 0.13 0.14 0.98 
50–54 0.14 0.44 0.03 0.61 0.79 4.17 
55–59 0.14 0.44 0.03 0.61 0.79 4.17 
60–64 1.08 1.12 0.16 2.68 3.57 14.52 
65–69 1.08 1.12 0.16 2.68 3.57 14.52 
70–74 8.64 4.39 1.47 16.76 15.89 73.65 
75–79 8.64 4.39 1.47 16.76 15.89 73.65 
>80 8.64 4.39 1.47 16.76 15.89 73.65 
>30 1.05 0.75 0.18 2.26 2.36 10.90 
All ages 0.63 0.45 0.13 1.36 1.43 6.67  
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where parameters α, γ, and δ determine the shape and magnitude of the 
relative risk function RR. C0 is a uniform random variable of the coun
terfactual concentration with lower bound at which it is assumed that 
there is no health risk (Burnett et al., 2018). One thousand groups of 
parameters for each disease and each age were obtained (Burnett et al., 
2018) to estimate the uncertainty of the mortality. 

The GEMM was constructed for adults >25 years, including the 
nonaccidental GEMM (noncommunicable diseases [NCD] and LRI; 
GEMM–NCD + LRI) and the GEMM for the five specific diseases LRI, LC, 
COPD, IHD, and stroke (GEMM5). The GEMM for NCD + LRI, IHD, and 
stroke were age-specific. For the endpoint of disease j, the GEMM for 
PM2.5 concentrations > C0 (2.4 μg m− 3) was defined as: 

RRj(Ci)= exp

⎛

⎜
⎝

θ × log
(

Ci − C0
α + 1

)

1 + exp
(

− Ci − C0 − μ
ν

)

⎞

⎟
⎠ (9)  

where parameters θ, α, μ, and υ are from Burnett et al. (2018), with the 
inclusion of the Chinese Male Cohort. We calculated 1000 groups of 
parameters using Monte Carlo simulations by randomly sampling 
normal distributions to estimate the uncertainty of the mortality. 

3. Results 

3.1. Prediction of PM2.5 under permanent lockdown in 2020 

To verify the performance of the model, the PM2.5 concentrations for 
2015–2019 were hindcasted by the trained model and compared with 
the observed data (Fig. 1). Fig. 1a–e shows the spatial distributions of 
the observed annual mean PM2.5 concentrations in Chinese cities from 
2015 to 2019. The highest annual mean PM2.5 concentrations, 60–106.1 
μg m− 3 in 2015, were observed on the North China Plain (NCP; Beijing, 
Tianjin, Hebei Province, and Shandong Province) and the Fenwei Plain 
(FWP; Shanxi Province, Shaanxi Province, and Henan Province), fol
lowed by the Yangtze River Delta, Sichuan Basin, Northeast China, and 
Xinjiang Province, with concentrations of 40–65 μg m− 3, and a few cities 
exceeded 70 μg m− 3 in 2015. In the other cities, the urban PM2.5 con
centrations were <45 μg m− 3. With the implementation of the Clean Air 
Action Plan from 2013 to 2017, significant improvements in air quality 
were observed nationwide (Zhang et al., 2019). In 2019, the annual 
mean PM2.5 concentrations in the NCP and FWP had declined to 
20–69.6 μg m− 3; that in the Yangtze River Delta and Xinjiang Uygur 
Autonomous Region had declined to 20–55 μg m− 3; and that in the 
Sichuan Basin and Northeast China had declined to 15–45 μg m− 3. In the 
coastal areas of southern China and in southeastern Tibet, the PM2.5 
concentrations showed no substantial changes from 2015 to 2019. As 
shown in Fig. 1f–j, the hindcasted annual mean PM2.5 concentrations in 
2015–2019 reproduced the observed spatial patterns well (Fig. 1a–e), 
although there were some slight under- and over-estimations. The bias 
showed a heterogeneous distribution, with mean values ranging from 
0.9 to 2.3 μg m− 3 during 2015–2019 (Fig. 1k–o). The bias was <3 μg m− 3 

in 92.5–97.3% of cities in 2016–2019 and in 71.2% of cities in 2015. 
Large biases were spatially associated with high PM2.5 concentrations, 
such as in the highly polluted cities of the NCP and FWP. Fig. 1p–t shows 
the seasonal variations in the observed and monthly hindcast PM2.5 
concentrations in 2015–2019. The PM2.5 concentrations were higher in 
winter and lower in summer, which is attributed to variations in emis
sions and in meteorological factors. For example, northern cities emitted 
more pollutants from residential heating in winter, whereas most cities 
had good weather conditions in summer; e.g., more rainfalls and a 
higher boundary layer. The hindcast evaluations showed that the sea
sonal cycle of PM2.5 could been well-captured, and the mean bias ranged 
between 2.5 and 3.2 μg m− 3. These evaluations gave us confidence to use 
the predictions for 2020 under the lockdown scenario to project the 
resultant health impact. 

During the COVID-19 outbreak, a large reduction in transportation 
emissions and a slight reduction in industrial emissions were observed in 
China in response to the preventive measures imposed (Wang et al., 
2020). Fig. 2 shows the populations, the predicted PM2.5 in cities, and its 
seasonal variability in 2020. Population is an important factor when 
quantifying the mortality attributable to long-term exposure to ambient 
PM2.5 in cities. The total urban population is 343.6 million and accounts 
for 24.5% of the total population of China. In eastern China, the distri
bution of population density is consistent with the distribution of PM2.5 
(Fig. 2a). The spatial distributions of the PM2.5 concentrations predicted 
for 2020 were similar to those from 2015–2019 (Fig. 2b). In response to 
the preventive measures taken during the pandemic, the annual mean 
PM2.5 concentrations decreased to 5.4–68.0 μg m− 3 in 2020, and the 
largest changes were observed in the NCP and FWP. The median of the 
concentrations fell from 43.3 μg m− 3 in 2015–2019 to 29.3 μg m− 3 in 
2020, showing a 32.3% reduction. Even under this scenario, there were 
only three cities with annual mean PM2.5 concentrations less than 10 μg 
m− 3, meeting the World Health Organization standard for avoiding the 
most common health effects of long-term PM2.5 exposure (Pope Iii et al., 
2002). 

3.2. Premature mortality attributable to long-term exposure 

The mortality caused by long-term exposure to ambient PM2.5 varies 
substantially across China, depending on the concentrations of these 
pollutants and the population exposed. We considered several causes of 
death, including NCD, LRI, COPD, LC, IHD, and stroke caused by long- 
term PM2.5 exposure. Fig. 3 shows the estimated premature mortality 
attributable to ambient PM2.5 under the whole year lockdown scenario 
and the mortality rates. The IER model is a disease-specific model in 
which five causes of death were considered: LRI, COPD, LC, IHD, and 
stroke. According to the predictions of the IER model, long-term expo
sure to PM2.5 contributed to 469.3 (95% CI: 245.5–676.7) thousand 
premature deaths and a mortality rate of 95.6‰ (Fig. 3d; 95% CI: 
50.0–137.8‰). The numbers of deaths attributed to PM2.5 from the five 
specific diseases (COPD, LC, LRI, IHD, and stroke) were 40.5, 35.9, 1.4, 
182.1, and 209.4 thousand, respectively (Fig. 3a). 

In the GEMM, many of the strong assumptions required by the IER 
model are relaxed and can better estimate the responses in highly 
polluted environments, such as in China. In the GEMM, the mortality 
attributable to long-term PM2.5 exposure was considered for two con
ditions: for nonaccidental deaths due to noncommunicable diseases and 
LRI (GEMM-NCD + LRI), and for deaths from five specific causes (COPD, 
LC, LRI, IHD, and stroke) (GEMM-5 Total). According to the five-cause- 
specific GEMM, exposure to PM2.5 caused an additional 609.4 (95% CI: 
428.9–767.3) thousand deaths in the pandemic of 2020, including 81.7, 
64.4, 26.7, 262.2, and 174.4 thousand deaths from COPD, LC, LRI, IHD, 
and stroke, respectively (Fig. 3b and c). The mortality rate was 124.1‰ 
(Fig. 3d; 95% CI: 87.4–156.3‰). According to the GEMM-NCD + LRI 
model, 837.3 (95% CI: 699.8–968.4) thousand deaths were attributable 
to long-term exposure to ambient PM2.5 (Fig. 3c). The associated mor
tality rate during the pandemic in 2020 was estimated to be 170.5‰ 
(95% CI: 142.5–197.2‰) (Fig. 3d). We note that the GEMM was more 
sensitive to the PM2.5 concentrations than the IER model, and the 
mortality estimated with the GEMM was higher than that estimated with 
the IER model. The mortality hazard ratios predicted with the GEMM 
were always larger than those predicted with the IER model under high- 
PM2.5 concentration conditions (Burnett et al., 2018). Therefore, the 
PM2.5 concentrations were still not low enough because of intensive 
emissions due to basic living needs in urban cities. 

3.3. Discussion 

Compared with the mean concentrations from 2015 to 2019, 99.3% 
of cities showed reductions in PM2.5 concentrations (Fig. 4a). The na
tional annual mean PM2.5 concentrations dropped from 44.6 μg m− 3 
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during 2015–2019 to 30.3 μg m− 3 in the whole-year lockdown in 2020. 
The GEMM–NCD + LRI model estimated that 140.2 (95% CI: 
122.2–156.0) thousand deaths (Fig. 4c) due to long-term exposure to 
PM2.5 were avoided with respect to the average annual deaths from 2015 
to 2019 (Fig. 4b). The estimated long-term health impacts in this study 
are lower than those reported by Giani et al. (2020b), which indicated 
that 28.7 (95% CI: 23.4–32.8) thousand premature fatalities were 
avoided in China under a permanent lockdown scenario in 2020. This 
underestimation is probably because we used PM2.5 concentrations in 
urban cities instead of grid data covering the whole country. 

Although anthropogenic emissions were sharply decreased, the 
14.4% reduction in premature deaths is still low despite a 32.2% 
reduction of PM2.5. Such limited health effects even with substantial air 
quality improvements were also recognized in previous studies (Giani 
et al., 2020a; Xue et al., 2019). The main reason is because PM2.5 con
centrations were still high in most cities, and even enhanced PM2.5 was 
reported in some cities during short periods of full lockdown (Sokhi 
et al., 2021). Therefore, the associated changes in the premature death 
rates are less steep than those obtained under low-PM2.5 conditions (Xue 
et al., 2019), China should adopt continuous emission control strategies 
to protect the population from air pollution. 

We assumed a stringent lockdown throughout the whole of 2020, but 
such a pandemic scenario may not be ‘too ideal’. According to previous 
studies, reductions in the industry and transport sectors contributed 
most strongly to the reductions in emissions during lockdown in China 
(Huang et al., 2020; Zheng et al., 2021). During lockdown, a 60–70% 
reduction in nitrogen oxide was detected in eastern China, and 70–80% 
of this reduction was attributed to the decline in road traffic (Huang 
et al., 2020). Similar emission reductions like those observed in the 2020 
pandemic may be achieved in the future with the promotion of electric 

vehicles (Liang et al., 2019) and innovation of industrial technology. 
The time series decomposition approach used here can be applied to any 
city with sufficient (at least two consecutive years) air pollutant obser
vations (e.g., PM2.5, ozone, and NO2) to estimate the associated 
long-term health benefits from emission reductions due to COVID-19 
lockdown. 

3.4. Study limitations 

Inevitably, there are a few uncertainties in the long-term health 
impact estimation. Firstly, although the risk factor models for long-term 
exposure to ambient PM2.5 from the latest epidemiological studies 
(Burnett et al., 2018; Burnett et al., 2014) were used, uncertainties 
remained in the parameters, such as baseline mortality rates, the 
concentration-response coefficient, and the counterfactual concentra
tion. These parameters were available on a country-level scale without 
consideration of the particle size and composition (Akhbarizadeh et al., 
2021; Faraji Ghasemi et al., 2020), which may vary by city. Addition
ally, city-level populations were used to calculate population exposure 
to average PM2.5 concentration in the city, and the spatial heterogeneity 
of ambient PM2.5 concentrations was ignored. Furthermore, there was 
still some bias in specific start time and end time of lockdown for each 
city. For example, cities in Hubei province recovered more slowly 
because of stringent measures implemented until April 2020. Therefore, 
overestimation or underestimation in predicted annual mean PM2.5 
concentrations existed under the whole-year lockdown scenario, but it is 
acceptable to use PM2.5 concentrations from February–March to predict 
the annual mean concentrations because both China’s emission and 
PM2.5 concentrations were substantially reduced from February to 
March 2020 (Shi et al., 2021; Zheng et al., 2021). Finally, we only 

Fig. 2. Spatial distribution of population (a; unit: × 104), predicted annual mean PM2.5 concentrations (b; unit: μg m− 3), and the seasonal variation in the predicted 
PM2.5 concentrations (c; unit: μg m− 3) in cities in China under the pandemic 2020 scenario. Error bars in (d, e) indicate the upper (2.5%) and lower 
(97.5%) quantiles. 
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Fig. 3. Annual deaths ( × 103) and death rates caused by long-term exposure to ambient PM2.5 in urban China under the pandemic 2020 scenario, estimated with the 
IER model and GEMM. Each specific cause of death attributable to ambient PM2.5 in IER (a) and GEMM (b) are presented. Total deaths and death rates estimated with 
the IER model, GEMM five-causes model, and GEMM–NCD + LRI are shown in (c) and (d). Data points show the mean numbers of deaths, and the error bars indicate 
the 95% confidence intervals (CI). 

Fig. 4. (a) Differences in annual mean PM2.5 concentrations between 2020 and 2015–2019. (b) Annual mean deaths ( × 103) caused by long-term exposure to 
ambient PM2.5 in urban China in 2015–2019 and (c) those under the pandemic 2020 scenario relative to the 2015–2019 mean levels estimated with the IER model 
and GEMM, respectively. 
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focused on premature mortality attributable to ambient PM2.5 exposure. 
However, side effects from COVID-19, such as increased risks of indoor 
air pollution exposure (Du et al., 2021), mental health effects (Marazziti 
et al., 2021), and changes in dietary habits (Batlle-Bayer et al., 2020) 
may also impact human health. Hence, more investigations should be 
performed in the future. 

4. Conclusions 

Based on the PM2.5 concentrations observed from 2015 to 2019, we 
used time series decomposition to divide the PM2.5 concentrations into 
their trend, cyclic, seasonal, and remainder components. The hindcast 
evaluations showed that the annual hindcast results satisfactorily 
reproduced the spatial distribution of the observed annual mean PM2.5 
concentrations for the period of 2015–2019, generally with a small bias 
of <3 μg m− 3, respectively. Based on the observed PM2.5 data for Feb
ruary–March 2020, we used the decomposed seasonal component to 
inversely calculate the other components in 2020 and then predicted the 
monthly PM2.5 concentrations for 2020. The predicted annual mean 
PM2.5 concentrations in urban China declined to 5.4–68.0 μg m− 3 in 
2020, and the largest changes were detected in the NCP and FWP. Even 
under the lowest emissions scenario, the annual mean PM2.5 concen
trations in urban cities were not low and had adverse health effects. 
Under lockdown in 2020, 469.3 (95% CI: 245.5–676.7), 609.4 (95% CI: 
428.9–767.3), and 837.3 (95% CI: 699.8–968.4) thousand people died 
prematurely from illnesses attributable to long-term exposure to 
ambient PM2.5 in Chinese cities, when estimated with the IER model, 
GEMM5, and GEMM–NCD + LRI, respectively. Our findings affirm the 
significant improvements in air quality under the whole year lockdown 
scenario when stringent control measures are taken to reduce emissions 
from industrial and traffic sectors. We suggest that future mitigation 
policies, such as promotion of electric vehicles and the innovation of 
industrial technology, should remain in place, and more stringent 
measures should be implemented on other emission sources (e.g., from 
power plants and residential sectors) to achieve substantial health 
benefits. 
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