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A B S T R A C T

Estimating PM2.5 exposure and its health impacts in cities involves large uncertainty due to the limitations of 
model resolutions. Consequently, attributing the sources of PM2.5-related health impacts at the city level remains 
challenging. We characterize the health impacts associated with chronic PM2.5 exposure and anthropogenic 
emissions in Shanghai using a chemical transport model (GEOS-Chem) and its adjoint. By incorporating high- 
resolution satellited-derived PM2.5 estimates into the calculation, we investigate the response of PM2.5 expo
sure and its related health impacts in Shanghai to changes in anthropogenic emissions from each individual 
region, species, sector, and month. We estimate that a 10% decrease in anthropogenic emissions throughout 
China avoids over 752 (506–1,044) PM2.5-related premature deaths in Shanghai, with changes in local emissions 
potentially saving 241 (161–334) lives. Ammonia (NH3) emissions are identified as the marginal dominant 
contributor to the health impacts due to the NH3-limited PM2.5 formation within the city, thus controlling NH3 
emissions at both the local and regional scales are effective at reducing the population’s exposure to PM2.5. A 
negative response of the PM2.5 exposure to local nitrogen oxides (NOx) emission changes is detected in winter. 
Even so, controlling NOx emissions is still justified since the negative impacts decrease as anthropogenic emis
sions decline and NOx emission reductions benefit the public health on average. The anthropogenic emission 
changes due to Clean Air Actions helped avoid 3,132 (2,108–4,346) PM2.5-related premature deaths in 2019 
relative to 2013, most of which are associated with emission reductions in the agricultural and industrial sectors.

1. Introduction

Long-term exposure to ambient fine particulate matter (particles 
with an aerodynamic diameter smaller than 2.5 μm; PM2.5) causes 
increased risk of premature death due to respiratory and cardiovascular 
diseases, and lung cancer, resulting in a significant health burden 
globally (Lelieveld et al., 2015; Burnett et al., 2018; Murray et al., 2020). 
The Global Burden of Disease (GBD) 2015 study shows that chronic 
PM2.5 exposure has caused 4.2 million premature deaths worldwide 
(Cohen et al., 2017). Notably, China accounts for over a quarter of these 
premature deaths and is one of the most significantly affected countries 
in terms of the health risks posed by PM2.5 exposure (IHME, 2018). In 
densely populated urban areas, the PM2.5-related health risk is much 

higher than those in rural areas. In 2014, for example, the observed 
PM2.5 concentrations in dense urban areas were 1.1–2.1 times those in 
rural areas in China, causing 85–225 more premature deaths per square 
kilometer in dense urban areas than rural areas (Lu et al., 2019). In 
addition to regional and nation-level actions, cities are thus responsible 
for developing effective and informed pollution control strategies to 
mitigate the adverse health impacts associated with PM2.5, which is a 
pressing sustainability challenge confronting China.

Shanghai is a highly urbanized city in China, with a population of 
24.76 million and an urbanization rate of 89.3 % in 2022 (Shanghai 
Municipal Bureau of Statistics, 2023). Even though a series of Clean Air 
Actions have been implemented to reduce PM2.5 concentrations since 
2013 (Shi et al., 2021; Liu et al., 2022; Ali et al., 2023), health problems 
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attributable to PM2.5 exposure remain significant. In 2023, the annual 
mean PM2.5 concentration was 28.7 μg m− 3 in Shanghai (IQAir, 2023), 
which is approximately 5.7 times higher than the Air Quality Guideline 
(AQG, 5 μg m− 3) established by the World Health Organization (WHO). 
Chronic PM2.5 exposure in Shanghai in 2016 is estimated to have caused 
10,418–20,762 premature deaths, which makes the city one of the most 
at-risk cities in China in terms of PM2.5-related health impacts (Zheng 
et al., 2021). Despite improvements in air quality, the rate at which 
PM2.5 concentrations have decreased has slowed as the PM2.5 concen
trations themselves have come down (Xiao et al., 2022), suggesting that 
more effective and accurate control strategies are needed to make 
further progress.

To facilitate effective emission reductions, ongoing efforts are being 
made to track the sources of PM2.5 pollution in China. Observational 
studies use classification approaches, for example positive matrix 
factorization, to identify the sources of aerosol based on measurements 
of species concentrations from various source types (e.g., Li et al., 2020; 
Feng et al., 2022). Model studies typically track emissions from aggre
gated types of sources by perturbing or tagging emissions from specific 
source categories (e.g., Li et al., 2016a; Gu et al., 2021; Ping et al., 2023). 
The applicability of both approaches is limited by computational costs, 
so they identify only a limited number of predefined sectoral and 
regional sources during a single time period. In contrast, adjoint model- 
based sensitivity analysis provides an alternative approach to efficiently 
calculate the response of a pollutant exposure metric to a large number 
(e.g., >104) of sources (Hakami et al., 2007; Henze et al., 2007, 2009). 
However, characterizing urban-scale health impacts remains chal
lenging. The urban-scale spatial variability of PM2.5 exposure is difficult 
to capture with model simulations, as the model domain needs to be 
large enough to capture all upwind sources and the model needs to be 
run on annual time scales, meaning the models are necessarily coarse, 
spatially. This can result in large uncertainties in estimating health im
pacts (Punger and West, 2013; Li et al., 2016b). Recent adjoint source 
apportionment studies have incorporated satellite-derived surface PM2.5 
products into the model, by which the PM2.5 exposure is refined at the 
neighborhood scale (Nawaz and Henze, 2020; Nawaz et al., 2021; Gu 
et al., 2023a), although these updated adjoint studies have been con
ducted without a focus yet on Chinese cities.

In China, previous studies applying the adjoint method to identify 
sources of PM2.5 concentrations have primarily focused on severe air 
pollution episodes or polluted seasons (e.g., Mao et al., 2020; Wang 
et al., 2022; Zhang et al., 2015, 2016; Hu et al., 2024). Adjoint-based 
analysis of health impacts attributable to PM2.5 exposure in specific 
cities in China remains limited. Using the nested-grid capability of the 
GEOS-Chem adjoint model, Zhao et al. (2019) calculated the sensitiv
ities of PM2.5-related premature deaths in seven receptor regions to 
emissions of all species, locations, and times in China. However, the 
model resolution of this country-level study was approximately 50 km, 
which may be too coarse to investigate city-level characteristics. Addi
tionally, secondary organic aerosols (SOA) from anthropogenic volatile 
organic compounds (VOCs) have not been included in many adjoint- 
based source attribution studies, leading to potential gaps in identi
fying SOA-related sources when designing effective emission control 
strategies.

In this study, we address the challenges identified above by applying 
the GEOS-Chem adjoint model to investigate the response of city-level 
PM2.5-related health impacts to various emission changes in Shanghai. 
The response of PM2.5-related premature deaths in Shanghai to 
anthropogenic emission changes from each individual species, sector, 
and province is quantified on a monthly scale. Satellite-derived surface 
PM2.5 concentrations are incorporated into the adjoint sensitivity 
calculation to improve the model’s estimate of PM2.5 exposure in the 
city. The contribution of SOA from anthropogenic VOCs is included. To 
investigate the effectiveness of the Clean Air Actions, changes in the 
response of PM2.5 exposure to various emission changes are investigated 
from 2013 to 2019. The objective is to provide detailed health burden 

source characterization to enhance the city’s ability for addressing air 
pollution and its related health damages.

2. Methods

2.1. The GEOS-Chem model

We use the nested-grid capability of the chemical transport model 
GEOS-Chem (aka forward model) to simulate concentrations of air 
pollutants at the 0.25◦×0.3125◦ horizontal resolution over the East Asia 
domain (100◦–140◦E, 20◦–50◦N). The forward model is included in the 
adjoint model version 35n (Henze et al., 2007), driven by assimilated 
meteorological fields from the Goddard Earth Observing System (GEOS- 
FP) of the NASA Global Modeling and Assimilation Office. A new SOA 
scheme has been incorporated into the model following Nault et al. 
(2021) and Nawaz et al. (2021). PM2.5 concentration is thus calculated 
as the total mass of aerosol-phase sulfate (SO2−

4 ), nitrate (NO−
3 ), 

ammonium (NH+
4 ), black carbon (BC), primary organic mass (POM), 

SOA, fine mode mineral dust (aerodynamic diameter < 1.8 μm), and 
associated water at 35 % RH and standard temperature and pressure. 
POM concentrations are estimated by multiplying the concentrations of 
primary organic carbon (OC) to satellite-derived POM/OC ratios by 
season and grid cell (Philip et al., 2014). Chemical boundary conditions, 
which are updated every 3 h, are from a global simulation at a horizontal 
resolution of 2◦×2.5◦ and a nested simulation at the 0.25◦×0.3125◦

horizontal resolution over a larger Asian domain (70◦–140◦E, 
15◦–55◦N). The model domains are shown in Fig. 1. We conduct a 6- 
month spin up and one-year continuous simulation to generate restart 
files for the base simulation in 2019 over the East Asia domain.

The Multi-resolution Emission Inventory for China (MEIC, version 
1.4, https://www.meicmodel.org, last access: 29 March 2024) is used to 
simulate aerosol concentrations in mainland China. The MEIC in
ventory, with a horizontal resolution of 0.25◦×0.25◦, provides emissions 
of sulfur dioxides (SO2), nitrogen oxides (NOx), carbon monoxide (CO), 
nonmethane volatile organic compounds (NMVOCs), ammonia (NH3), 
OC, BC, and PM2.5 across five sectors (i.e., power, industry, residential, 
transportation, and agriculture) on a monthly scale. Anthropogenic 
emissions outside mainland China are from the Hemispheric Transport 
of Air Pollution version 3 (HTAPv3, https://edgar.jrc.ec.europa.eu/data 
set_htap_v3, last access: 29 March 2024) anthropogenic emission in
ventory, with a horizontal resolution of 0.1◦×0.1◦. The calculation of 
emissions of anthropogenic SOA precursors (SOAP) and the speciation of 
NMVOC emissions are described in our previous work (Gu et al., 2023a). 
The total NMVOCs emissions in every grid box are distributed to indi
vidual species emissions according to the speciation information from 
the NMVOC EDGARv4.3.2 database (Huang et al., 2017). SOAP repre
sents the lumped precursors of anthropogenic SOA including aromatics 
and intermediate-volatile organic compounds (IVOCs) and semi- volatile 
organic compounds (SVOCs). IVOCs generally have a C* of 103 to 106 
μg m− 3 and SVOCs have a C* of 1 to 102 μg m− 3 (Nault et al., 2021). 
Natural emissions, including those from biogenic (Guenther et al., 
2006), biomass burning (Van Der Werf et al., 2010), dust (Zender et al., 
2003), lightning (Murray et al., 2012), and soil sources (Hudman et al., 
2012), are included in the model calculation.

2.2. Adjoint sensitivity calculation

For our source apportionment in the base simulation, we conduct 12 
monthly adjoint simulations in 2019 over the East Asia domain, and 
force the adjoint after each forward model run to calculate the sensi
tivity of the receptor function (J), defined as the annual mean 
population-weighted PM2.5 concentration in Shanghai, to changes in 
emissions of major PM2.5 precursors (i.e., SO2, NOx, NH3, OC, BC, and 
SOAP) in each month. High-resolution (0.01◦×0.01◦) satellite-derived 
surface PM2.5 concentrations (van Donkelaar et al., 2021) are 
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incorporated into the adjoint model to provide better estimates for city- 
scale PM2.5 exposure following Nawaz et al. (2021). To capture fine- 
scale spatial variability of PM2.5 concentrations, the ratios of satellite- 
derived surface PM2.5 concentrations to the same products averaged to 
our model resolution are applied to the modeled PM2.5 concentrations 
from the forward model simulation. Simultaneously, a bias correction is 
conducted by comparing the simulated PM2.5 concentrations with the 
satellite-derived ones in 2019. The receptor function J is calculated as: 

J =

∑
i∈Shanghai(Pi × XI

sati
SATI

SATI

X
0
I
)

∑
i∈ShanghaiPi

(1) 

Where i and I refer to spatial indexing at the 0.01◦×0.01◦ resolution of 
satellite-derived product and the 0.25◦×0.3125◦ resolution of the 
model, respectively. sati is the satellite-derived annual mean PM2.5 
product, and SATI is the same satellite-based estimate averaged at the 
model resolution. XI is annual mean PM2.5 concentration from the for
ward model, and X0

I is the same modeled annual mean PM2.5. To capture 
sub-grid spatial variability of PM2.5 concentrations, we apply the 
downscaling ratio sati

SATI 
and rescaling factor SATI

X
0
I 

to the adjoint forcing and 

treat them as constants during the adjoint calculation. For all the sati 
values in the grid cell I, the calculation shares the same denominator (i. 
e., SATI). We apply a mask to identify the area of the city. The shape file 
is sourced from United Nations Office for the Coordination of Humani
tarian Affairs Regional Office for Asia and Pacific (https://data. 
humdata.org/dataset/, last accessed: 29 March 2024). Pi is the fine 
resolution population at grid cell i. The fine-resolution population data, 
approximately 1 km in scale, is obtained from the Gridded Population of 
the World version 4 (GPWv4) product (CIESIN, 2018). We employ linear 
interpolation to estimate the population for the year 2019, utilizing 
population data available for 2015 and 2020.

The adjoint model computes the linear response (i.e., adjoint sensi
tivity) of J to PM2.5 precursor emission changes within the context of the 
emission and meteorological conditions specified for the forward model 
simulation in 2019. The sensitivities are calculated as: 

λs,m,I = ∇Es,m,I J =
∂J

∂Es,m,I
(2) 

Where λs,m,I is the sensitivity of J to changes in emissions (Es,m,I) of 
species s at location I in month m. These gradients are calculated at the 
model resolution (0.25◦×0.3125◦). We then consider perturbations in J 
owing to changes in emissions resolved at the resolution of the emissions 
(0.1◦×0.1◦ for HTAPv3 and 0.25◦×0.25◦ for MEIC) to better quantify 
finer-scale features of source attribution. We assume that sensitivities 
λs, m, I are constant over each coarse grid box are constant, even though 
uncertainty may rise due to the loss of sub-grid variability in λs, m, I. 
Changes in J (dJs,k,m,d) caused by emissions (dEs,k,m,d) of species s from 
sector k in month m at emission resolution grid box d can thus be 
calculated as: 

dJs,k,m,d = λs,m,d∈IdEs,k,m,d (3) 

where λs,m,d is the adjoint sensitivity of J to changes in emissions of 
species s in the grid box I to which the location d belongs. As discussed in 
previous analyses (Nawaz et al., 2023; Gu et al., 2023b), Equation (3)
may introduce substantial uncertainty under conditions where the 
response of J exhibits a high degree of nonlinearity in response to 
dEs,k,m,d. To minimize the nonlinear effects, we restrict our analysis to 
consideration of marginal contributions, i.e., considering a 10 % change 
in precursor emissions.

To estimate the changes in J caused by Clean Air Actions during 
2013–2019, we recalculate the adjoint sensitivity in 2013 (λ́ s,m,d) by 
fixing the meteorology in 2019 while changing the anthropogenic 

Fig. 1. (a) Model domains, distributions of modeled surface-level annual mean PM2.5 concentrations (b) before and (c) after satellite downscaling and bias 
correction, as well as (d) the distribution of population in 2019. The outer and inner domains of the nested simulations are shaded in white and blue, respectively. 
The dash line in (b), (c), and (d) is the boundary of Shanghai considered in the calculation. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)
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emissions from 2019 to 2013. The adjoint model sensitivity is the 
tangent linear gradient of the receptor function, the application of which 
is accurate over a limited range of perturbations (Henze et al., 2007). For 
secondary components (i.e., NH3, NOx, SO2, and SOA), Equation (3), 
which is the first-order linear approximation, neglects higher order 
sensitivities, leading to relatively larger errors when large emission 
perturbations occur. Therefore, we apply the mean value of the adjoint 
sensitivities between 2013 and 2019 to account for the nonlinear im
pacts of emission changes. The corresponding response in J can be 
calculated as: 

dJs,k,m,d =
1
2
(λs,m,d + λʹ

s,m,d)(Es,k,m,d − É s,k,m,d) (4) 

where Es,k,m,d and Eʹ
s,k,m,d are the anthropogenic emissions of species s 

from sector k in month m at location d in 2019 and 2013, respectively.

2.3. Health impacts

Premature deaths attributable to chronic PM2.5 exposure are esti
mated utilizing the Global Exposure Mortality Model (GEMM; Burnett 
et al., 2018). Compared to the GBD 2019 study (Murray et al., 2020), 
GEMM encompasses a broader concentration range to assess the health 
risks associated with PM2.5 exposure and generally yields higher esti
mates of premature deaths. We estimate hazard risk (HR) for non
communicable diseases (NCD) and lower respiratory infections (LRI): 

HR(z) = eθT(z) (5) 

Here, θ is the exposure–response model coefficient, z = max(0, J-2.4 μg 
m− 3), which is the additional PM2.5 exposure in comparison to the 

counterfactual PM2.5 level. T(z) = f(z)ω(z) with f(z) = log
(

1+z
α

)
,

ω(z) = 1/(1+ e−
z− μ

ν ). α, μ, and ν determine the form of the HR function, 
which are obtained from Burnett et al. (2018). The number of PM2.5- 
related premature deaths is thus calculated as: 

O = PB(1 −
1

HR(z)
) (6) 

where P is the total population in Shanghai; B is the baseline mortality 
rate of the health outcome O. The baseline mortality rate (above 25 
years of age) attributed to each outcome in Shanghai is derived (Text S1) 
according to Zhou et al. (2019) based on the country-level rates obtained 
from the GBD Results Tool (https://vizhub.healthdata.org/gbd-results/, 
last access: 29 March 2024). Total population and the corresponding 
proportion of each age group in Shanghai are obtained from the National 
Bureau of Statistics of China (https://www.stats.gov.cn/, last access: 29 
March 2024). The impact of a specific source change on PM2.5-related 
health impacts in Shanghai is quantified by calculating the difference in 
health outcome O resulting from changes in PM2.5-related relative risks. 
To evaluate the impacts of emission changes, population and the mor
tality data are fixed to the base year (i.e., 2019) when calculating the 
changes in the exposure-related health impacts between 2013 and 2019. 
In Section 3.5, we discuss the uncertainty arising from the health impact 
estimates in greater detail.

3. Results and Discussions

3.1. PM2.5 exposure in Shanghai and model evaluation

Fig. 1b–d displays the distributions of modeled and satellite-derived 
annual mean PM2.5 concentrations in Shanghai and its surrounding re
gion, along with the corresponding distribution of population in 2019. 
As a majority of the population is concentrated in urban areas, the 
modeled PM2.5 concentration at the default resolution (Fig. 1b) fails to 
capture this level of detail, introducing bias in estimating PM2.5 

exposure. In comparison, the high-resolution satellite-derived PM2.5 
data (Fig. 1c) aligns more closely with the population distribution, 
providing an approach to adequately characterize the spatial variability 
of PM2.5 exposure within the city. Table S1 compares the modeled and 
satellite-derived annual mean PM2.5 concentrations and those obtained 
from in-situ measurements at 10 monitoring sites in Shanghai in 2019, 
where the observed annual mean PM2.5 concentrations are derived by 
averaging hourly measurements obtained from the China National 
Environmental Monitoring Centre (https://air.cnemc.cn/, last access: 9 
May 2024). The results suggest that the default forward model outputs 
inadequately describe the variability of PM2.5 levels across these 
monitoring sites, as 8 out of the 10 sites are included in one grid box. By 
applying satellite downscaling and bias correction, the modeled annual 
mean PM2.5 concentration over the 10 monitoring sites decreases from 
39.6 μg m− 3 to 33.6 μg m− 3, exhibiting improved consistency with the 
surface measurements (35.9 μg m− 3). The normalized mean bias de
creases from +10.3 % to − 6.4 %. Moreover, the correlation coefficient 
(R) between the modeled and observed PM2.5 concentrations increases 
from 0.61 to 0.82, suggesting that city-level PM2.5 variability is better 
characterized. There is an exception of a peak near Qingpu, which is not 
well captured by the satellite observations.

It should be noted that the satellite downscaling and bias correction 
apply a uniformly scaling factor to all the PM2.5 components in each 
0.01◦×0.01◦ grid box. Their ratios in the total PM2.5 concentrations are 
still determined by the performance of the forward model. The model’s 
performance in simulating PM2.5 components can be evaluated by 
comparing the modeled ratio of each component concentration in the 
total PM2.5 concentration to literature studies, displayed in Table S2. 
With SOA included, the simulated PM2.5 composition aligns well with 
literature observations in Shanghai, where nitrate and organic aerosols 
act as the dominant components accounting for 36.2 % and 23.9 %, 
respectively of the annual mean PM2.5 concentration in 2019. In Section 
3.5, we discuss the uncertainties from both model PM2.5 estimates and 
the estimation of health impacts associated with this exposure. We treat 
them separately and only consider the latter when determining the 
uncertainty bounds in following sections, since the covariance between 
the exposure-related health impact calculation and other types of un
certainties remains to be investigated and the estimation of health im
pacts is usually the largest source of uncertainty in exposure-associated 
health assessments (Nawaz, et al., 2021; Gu et al., 2023). In 2019, J is 
estimated to be 33.7 μg m− 3, which translates into 15,782 
(10,467–22,219) premature deaths （NCD + LRI）out of a population 
of 20.16 million population (above 25 years of age), according to 
Equation (5) and (6).

3.2. Marginal contributions of anthropogenic emissions

To minimize the uncertainty stemming from nonlinear secondary 
aerosol formation, we analyze marginal contributions, which are 
changes in J contributed by a 10 % change in anthropogenic emissions 
from various sources. Fig. 2a displays the marginal contributions of 
anthropogenic emissions from Shanghai (SH_AN), other Chinese prov
inces (OTH_CH_AN), and regions outside of China (nonCH_AN) within 
the inner domain in 2019. A 10 % decrease in these emissions can lead to 
an approximately 2.6 μg m− 3 decrease in J, where SH_AN and OTH_
CH_AN account for 29.8 % and 63.3 %, respectively, of these decreases. 
The PM2.5 changes can translate into 815 (548–1,132) premature deaths 
(NCD + LRI) in Shanghai, where a 10 % decrease in SH_AN and OTH_
CH_AN avoids 241 (161–334) and 511 (345–710) deaths, respectively. 
Fig. 2b and 2c attribute the marginal contributions of SH_AN and 
OTH_CH_AN into sectors and species. Changes in NH3 emissions are 
found to play dominant roles in marginal changes in J, making up 64.0 
% of the marginal contributions from local emissions and 47.8 % of 
those from OTH_CH_AN. The results are consistent with previous studies 
(e.g., Bai et al., 2019; Gu et al., 2021a), suggesting that NH3 emission 
abatement is crucial in PM2.5 pollution control in China. Despite the 
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large share of the marginal contributions, total NH3 emissions in 
Shanghai are relatively low, accounting for only 3 % of the mass of local 
emissions of species that contribute to PM2.5 mass concentrations. 
(Fig. 2d). This result suggests a highly sensitive response of PM2.5 

formation to local NH3 emission changes under the emission conditions 
in 2019.

The abundance of free NH3 in the sulfate-nitrate-ammonium (SNA) 
system in the atmosphere can be diagnosed by the molar ratio, M: 

Fig. 2. (a) Changes in J (pop-weighted annual average PM2.5 in Shanghai) caused by a 10% change in anthropogenic emissions from Shanghai (SH_AN), other 
Chinese provinces (OTH_CH_AN), and regions outside of China (nonCH_AN) within the inner domain in 2019. (b) and (c) attribute the marginal contributions of 
SH_AN and OTH_CH_AN into sectors and species. The inner ring illustrates the marginal contributions across different sectors, while the outer ring provides a more 
detailed breakdown of each sector’s contributions by species. (d) and (e) are the proportions of species emissions in total anthropogenic emissions within and outside 
Shanghai in China, corresponding to (b) and (c), respectively. We consider five sectors including industry (IND), transportation (TRA), power (POW), residential 
(RES), and agriculture (AGR) from MEIC emission inventory.

Fig. 3. Distributions of seasonal mean molar ratio, defined as M = (
[
NHT

3
]
− 2

[
SO2−

4
]
)/[NOT

3 ], in summer (June to August, JJA) and winter (December to February, 
DJF) in 2019, where 

[
NHT

3
]

is the sum of gas-phase NH3 and particulate NH+
4 , and [NOT

3 ] is the sum of gas-phase HNO3 and particulate NO−
3 .
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M = (
[
NHT

3
]
− 2

[
SO2−

4
]
)/[NOT

3 ] (7) 

where 
[
NHT

3
]

is the sum of gas-phase NH3 and particulate NH+
4 and [NOT

3 ]

is the sum of gas-phase nitric acid (HNO3) and particulate NO−
3 . R > 1 

indicates NH3 in the atmosphere is in excess while R < 1 suggests nitrate 
is rich and the formation of ammonium nitrate is limited by NH3 emis
sions. As shown in Fig. 3, the value of M in Shanghai tends to be less than 

1 throughout the year, indicating that local PM2.5 formation is signifi
cantly limited by ambient NH3 concentrations. As a result, in addition to 
agricultural emissions, PM2.5 levels in Shanghai are highly sensitive to 
changes in NH3 emissions from local transportation and industrial sec
tors (Fig. 2b), despite NH3 emissions accounting for only a small fraction 
of the total anthropogenic emissions from these sources. For short-term 
PM2.5 mitigation, local NH3 emission control is undoubtedly the most 

Fig. 4. Distributions of (a) marginal contributions of anthropogenic emissions of NH3, NOx, and SO2 (unit: μg m− 3), (b) mean sensitivity (unit: μg m− 3 kg− 1box− 1) of 
J to these species emissions, and (c) total species emissions (unit: kg) in summer (JJA) and winter (DJF), respectively. Results for anthropogenic emissions of NH3, 
NOx, and SO2 are displayed.
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effective approach. However, given the low NH3 emission levels in 
Shanghai, NOx and SO2 emission abatement within the city remains 
crucial to balance the ambient SNA ratio, yielding continuous benefits in 
air quality. PM2.5 formation outside Shanghai is found to be more con
strained by NOx and SO2 emissions, where M is greater than 1 in most 
provinces during summertime (Fig. 3). As Fig. 2d shows, large NH3 
emissions, especially those from the agricultural sector, result in sub
stantial free NH3 in the atmosphere. In such cases, NOx and SO2 emission 
reductions are effective approaches to reduce PM2.5 levels in these re
gions. In winter, as the abundance of free NH3 decreases, NH3 emission 
control, on both local and regional scales, can be more effective in 
reducing PM2.5 exposure in Shanghai.

Industrial emissions make up 27.3 % and 34.0 % of the marginal 
contributions of SH_AN and OTH_CH_AN, respectively. SOAP emissions 
account for 12.7–19.8 % of the marginal contributions of industrial 
emissions, indicating a crucial part that may have not been counted in 
previous model-based source apportionment calculations (Zhang et al., 
2015; Gu et al., 2021b). An increasing trend in SOA fraction has been 
observed in Chinese cities in recent years (Gu et al., 2020, 2023c; Huang 
et al., 2019; Xu et al., 2019). This trend, together with our source 
attribution results, suggests that controlling emissions of SOAP, for 
example benzene, toluene, ethylbenzene, and xylenes, are critical for 
reducing PM2.5 exposure in Shanghai. Changes in transportation and 
residential emissions account for 11.7 % and 15.6 %, respectively, of the 
marginal contributions from SH_AN (Fig. 2b), and 9.3 % and 9.9 %, 
respectively of those from OTH_CH_AN (Fig. 2c). While the overall 
proportions are similar, the breakdowns of each sector’s share exhibit 
large differences due to the varying PM2.5 formation regimes within and 
outside the city. For local contributions, the transportation and resi
dential parts are mainly associated with anthropogenic emissions of 
primary carbonaceous aerosols and NH3, respectively. In contrast, for 
the regional parts, marginal contributions associated with these two 
sectors are primarily due to changes in NOx and OC emissions, 
respectively.

3.3. Seasonal variations of marginal contributions

Monthly results provide additional insights for formulating effective 
emission control strategies in different seasons. Fig. 4 presents the 
marginal contributions of anthropogenic emissions of NH3, NOx, and 
SO2, the sensitivity of J to these species emissions, and the total species 
emissions in summer and winter in 2019. Similar results for OC, BC, and 
SOAP are displayed in Fig. S2. Fig. 4a demonstrates that provincial 
contributions exhibit notable seasonal variations. In summer, J is pri
marily affected by changes in emissions from nearby sources, whereas in 
winter, changes in anthropogenic emissions from distant provinces (e.g., 
Liaoning, Inner Mongolia) also contribute to PM2.5 exposure in 
Shanghai. In addition to local emissions, changes in anthropogenic 
emissions from Jiangsu and Zhejiang have the largest contributions to J, 
making up 34.9 % and 19.0 % of the marginal contributions of OTH_
CH_AN. The seasonal variations of marginal contributions can be 
attributed to changes in anthropogenic emissions, atmospheric chem
istry, as well as the meteorological conditions. The latter two factors 
determine the marginal sensitivity (Fig. 4b) of the receptor function (i.e., 
J), as well as the overall chemical environment, but the sensitivity in any 
single grid cell is not dependent on the magnitude nor even presence of 
emissions in that specific location (hence large sensitivities can exist in 
remote areas or over water).

A 10 % decrease in NH3 emissions during wintertime results in larger 
decreases in J than those during summertime, even though the winter
time emissions are smaller due to reduced agricultural activities (Zhang 
et al., 2018). The increased marginal contributions during winter can 
thus be attributable to the enhanced sensitivity of PM2.5 formation to 
NH3 emissions (Fig. 4b). The value of M decreases in winter (Fig. 3) as 
PM2.5 formation becomes more sensitive to NH3 emission changes due to 
decreased abundance of free NH3 in the atmosphere (Thunis et al., 

2021), and because the meteorological conditions are more favorable for 
formation of ammonium nitrate. The increased sensitivity of J to NH3 
emission changes indicates that NH3 emission control can be more 
efficient in winter; reducing 1 kt NH3 emissions within and out of 
Shanghai would lead to a decrease of 1.9 × 10− 1 μg m− 3 and 3.5 × 10− 4 

μg m− 3, respectively in J during summer, and a decrease of 3.2 × 10− 1 

μg m− 3 and 1.6 × 10− 3 μg m− 3, respectively in winter.
A 10 % decrease in NOx emission from OTH_CH_AN, particularly 

those from North China, leads to more decreases in J in winter than 
summer. As most NOx are emitted by transportation and industrial 
sources, NOx emissions are relatively constant across the year. The 
increased marginal contributions in North China can mainly be attrib
uted to more favorable formation conditions of ammonium nitrate (Guo 
et al., 2018) and long-distance transport. A decrease of 1 kt NOx emis
sions in Shanghai is estimated to cause a change of − 5.9 × 10− 6 μg m− 3 

in J in winter and a change of 5.6 × 10− 4 μg m− 3 in summer. The 
negative response of PM2.5 exposure to NOx emission changes suggests 
local NOx emission control might lead to adverse impacts on PM2.5 air 
quality during wintertime. Similar NOx-PM2.5 relationships have been 
observed in NOx-rich regions in winter, which is attributed to an in
crease in the oxidizing capacity of the atmosphere (Huang et al., 2021; 
Thunis et al., 2021). As ozone (O3) formation is NOx-saturated in 
Shanghai (Gu et al., 2024), reducing NOx emissions promotes O3 pro
duction while weakening O3 titration, resulting in increased O3 levels in 
the city. The enhanced oxidizing capacity of the atmosphere is condu
cive to the production of SO2−

4 from SO2 oxidation and the production of 
NO3 radical via the reaction between NO2 and O3, promoting the for
mation of SO2−

4 and NO−
3 during wintertime (Zhang et al., 2015; Kenagy 

et al., 2018).
The influence of SO2 emission changes on J is much smaller than 

those of NH3 and NOx on both local and regional scales (Fig. 4b). 
Compared to emission changes during wintertime, SO2 emission 
changes in summer account for most of the marginal contributions due 
to the enhanced formation of ammonium sulfate. In 2019, a per-unit (i. 
e., 1 kt) decrease in SO2 emissions within and out of Shanghai can lead to 
a decrease of 3.1 × 10− 3 μg m− 3 and 1.2 × 10− 4 μg m− 3, respectively, in 
J. In winter, a slightly negative response of J to SO2 emission changes in 
North China is detected. This is associated with the tradeoff between the 
formation of ammonium sulfate and ammonium nitrate. Reducing SO2 
in North China allows more NH3 to produce ammonium nitrate during 
the southward transport of air pollutants and therefore increase the 
PM2.5 concentrations in regions where PM2.5 formation is NH3-limited.

As POM and BC are primary aerosols, their sensitivity patterns are 
only affected by meteorological changes. During wintertime, as is shown 
in Fig. S2, the prevalent northerly winds facilitate the long-distance 
transport of air pollutants, resulting in enhanced response of J to 
changes in primary carbonaceous emissions from North China. The 
increased emissions from the residential sector lead to larger marginal 
contributions of OC and BC emissions in winter. Since we consider only 
SOAP emissions from the industrial sector, SOAP emissions exhibit weak 
seasonal differences. The marginal contributions of SOAP emissions 
from Shanghai and surrounding regions are enhanced in summer due to 
the increased OH (Y.F. Gu et al. 2023), while the increased response of J 
to changes in SOAP emissions from North China in winter can be mainly 
attributed to enhanced regional transport (Fig. S2).

Figs. 5 and 6 present the marginal contributions and marginal sen
sitivities aggregated across species, sectors, provinces and months. 
Reducing agricultural emissions by 10 % yields more decreases in J 
during winter than summer. Given the large NH3 sensitivity, controlling 
agricultural emissions in winter at both local and regional scales turns 
out to be an effective approach to reduce the population’s exposure to 
PM2.5 pollution in Shanghai. The marginal contributions of industrial 
emissions are mainly affected by changes in NOx and SOAP emissions. 
Even though a per-unit decrease in NOx emissions yield smaller changes 
in J than NH3, the marginal contributions of NOx emissions from the 
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industrial sources remains large due to its high emission levels. As Fig. 6
shows, controlling industrial emissions in nearby provinces (i.e., Jiangsu 
and Zhejiang) during April to August can lead to more decreases in J. In 
addition to the industrial sector, the marginal contributions of trans
portation and power sectors are also dominated by NOx emission 
changes. Even though SO2 emissions don’t act as a key source affecting 
J, controlling SO2 emissions from industrial and power sectors in 
Shanghai, Zhejiang and Jiangsu in summer can still benefit PM2.5 air 
quality in the city. Wintertime SO2 emission reduction in North China 
may pose challenges for J due to the negative SO2 sensitivity, while these 
challenges could be mitigated by coordinated NH3 and NOx control to 
reduce the adverse impacts of long-range transport of air pollution. 
Controlling NOx emissions, especially targeting regional transportation, 
industrial and power sectors, thus remains a crucial task for coordinated 
PM2.5 and O3 control for the long-term run. In addition to continental 
sources, J is found to be highly sensitive to anthropogenic emission 
changes from the ocean (Fig. 4b and Fig. S2). Controlling shipping 
emissions can thus be crucial for reducing the PM2.5 exposure in 
Shanghai.

3.4. Health benefits of the Clean air Actions

China has implemented a variety of Clean Air Actions to reduce 
anthropogenic emissions and improve air pollution since 2013. As a 
result, the annual mean PM2.5 concentration (satellite-derived) reduced 
from 59.86 to 33.7μg m− 3 in Shanghai, translating into 5,419 
(4,520–6,059) premature deaths (NCD + LRI) avoided due to the 
improved PM2.5 air quality. To investigate how the PM2.5-related health 
impacts respond to the anthropogenic emission changes, Fig. 7 displays 

the changes in the sensitivity of J to per-unit changes in anthropogenic 
emissions in terms of species, sectors, and provinces during 2013 to 
2019. As POM and BC are primary aerosols, their contributions to PM2.5 
change linearly with their emissions and the magnitude of the sensitivity 
is only associated with the meteorology. As we keep the meteorological 
conditions fixed in 2019 when calculating the adjoint sensitivities in 
2013, the response of J in Shanghai to OC and BC emission changes 
discussed here remains constant. We thus only discuss changes in SO2, 
NH3, NOx, and SOAP sensitivities in the study.

As Fig. 7a shows, the anthropogenic emission changes result in 
varied sensitivities of J to per-unit emission changes of SO2, NOx, and 
NH3. Since NH3 emissions are less regulated compared to those of SO2 
and NOx (Bai et al., 2019), the amount of free NH3 in the atmosphere 
generally increases, which is shown by increased M in Fig. S3. As a 
result, J becomes less sensitive to NH3 emission changes in most conti
nental regions in East China. The reduced NH3 sensitivity accompanies 
increased sensitivity of NOx and SO2, suggesting regional emission 
control on NOx and SO2, especially NOx, becomes more efficient as 
anthropogenic emissions are declining. In southern Shanghai and Zhe
jiang, the amount of free NH3 in the atmosphere slightly decreases 
during the studied period (Fig. S3), making PM2.5 formation more 
limited by NH3 emissions. The slightly increased NH3 sensitivity causes 
similar NH3 emission reductions over these regions tend to yield larger 
decreases in J during recent years. Oceanic PM2.5 formation is highly 
NH3-limited (Fig. 3), and the response of J to oceanic SO2 and NOx 
emissions exhibit opposite changes due to the tradeoff between sulfate 
and nitrate. While the anthropogenic emissions from international 
shipping and aviation sectors are less regulated (Crippa et al., 2023), 
increases in oceanic SO2 sensitivity suggests that controlling SO2 

Fig. 5. Marginal contributions (unit: μg m− 3) of anthropogenic emissions aggregated across species, sectors, provinces and months. The results for the top 20 source 
provinces are shown.
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emissions in these sectors would lead to large improvement in PM2.5 air 
quality in Shanghai.

Fig. 7b shows the mean species sensitivity changes in the top 20 
source provinces. Apart from NH3 emissions from the agricultural and 
industry sectors, reducing a per-unit local anthropogenic emissions has 
led to larger decreases in J in 2019 than 2013 due to regulatory mea
sures. Even though PM2.5 exposure in Shanghai is more sensitive to 
changes in NH3 emissions than to NOx and SO2, the marginal benefits of 
reducing local NOx and SO2 emissions increase as overall anthropogenic 
emissions are declining. Continuous regulation of those emissions is thus 
conducive to achieving long-term air quality goals. Additionally, the 
marginal benefits caused by a per-unit decrease in local SOAP emissions 
have increased, suggesting that local VOC emission control can be an 
effective approach to reducing population’s exposure to PM2.5 pollution 
in Shanghai. Regional NOx emission control exhibits larger increases in 
marginal benefits due to emission regulations implemented during 
2013–2019. The largest increase is detected in NOx emissions from the 
power sector in Zhejiang, where a per kt decrease in emissions can yield 
a 2.9 × 10− 4 μg m− 3 greater reduction in J in 2019 compared to 2013.

In Fig. 8, we translate the PM2.5 exposure changes into health ben
efits in Shanghai, owing to anthropogenic emission changes between 
2013 and 2019 in surrounding provinces. Total anthropogenic emission 
changes in these provinces avoid 3,132 (2,108–4,346) premature deaths 
attributable to PM2.5 exposure in Shanghai, in which local emission 
changes contributed to 43.1 % of these avoided deaths. As a result of the 
large NH3 sensitivity, agricultural emission decreases bring substantial 
health benefits, where the emission changes in and out of Shanghai help 
to avoid 541 (364–750) and 551 (371–765) premature deaths, respec
tively, in the city. Industrial emission changes yield the largest health 
benefits. In addition to the 564 (380–783) deaths avoided by local 
emission changes, industrial emission regulations in Jiangsu contribute 

significantly to health benefits, helping to prevent 274 (184–380) PM2.5- 
related premature deaths in Shanghai and accounting for 32.5 % of the 
health benefits from regional industrial emission regulations. Provincial 
NH3 emissions from the transportation sector are found to increase by 
0.3–51.0 % during 2013–2019, despite the general decreasing trends in 
anthropogenic emissions. The increase leads to an additional 26 (18–36) 
premature deaths in Shanghai. While similar increases (6.1 %) are 
detected in local NOx emissions from the transportation sector, the 
related PM2.5-related health burden doesn’t increase due to the negative 
response of J to NOx emission changes during winter. In Shanghai, the 
rise in NH3 emissions from the residential and transportation sectors 
greatly offsets the health benefits from reductions in other emissions, 
resulting in a net increase of 2 (1–3) premature deaths due to changes in 
local transportation emissions. The results highlight the necessity of 
controlling NH3 emissions in the transportation sector to reduce the 
PM2.5-related health burden at the city level, even if the total emissions 
are not as significant as other pollutants. Similar negative impacts are 
detected in the residential sector, where the NH3 emission increases in 
Shanghai lead to an additional 29 (20–40) premature deaths within the 
city. Given the large marginal sensitivity of NH3 emissions, reducing 
NH3 emissions on both local and regional scales remains a crucial task 
for continuously reducing the health risks attributable to PM2.5 exposure 
in Shanghai.

3.5. Uncertainty and limitations

Uncertainties in estimating PM2.5 exposure and quantifying its 
response to emission changes arise from the representativeness of GEOS- 
Chem’s aerosol simulation and the emissions inventories. By incorpo
rating the high-resolution satellite derived surface PM2.5 products into 
the adjoint sensitivity calculation and including industrial SOA 

Fig. 6. Similar as Fig. 5 but for the sensitivity (unit: μg m− 3kg− 1) of J to changes in anthropogenic emissions aggregated across species, sectors, provinces 
and months.
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Fig. 7. (a) Absolute differences in the sensitivity (left panel, unit: μg m− 3 kg− 1) of J to per-unit changes in NH3, NOx, and SO2 emissions as a result of the 
anthropogenic emission changes from 2013 to 2019 in China. The scatter plot (right panel) shows the relationship between the estimated sensitivity in 2013 and 
2019 for corresponding species, aggerated across sectors and provinces. The differences in sensitivity aggerated across species, sectors, and provinces, are further 
displayed in (b). Only results for the top 20 source provinces of PM2.5 exposure in Shanghai are shown. Compared to the results derived by zero-out experiments, the 
adjoint sensitivities indicate marginal benefits brought by per-unit decrease in species emissions, which informs the slope of the tangent line of the nonlinear 
PM2.5 formation.
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components, the uncertainty in the PM2.5 exposure estimate has been 
greatly reduced. However, SOAP emissions from natural and anthro
pogenic sources other than the industrial sector are not included. As 
discussed in Sect. 3.1, the overall mean bias in the model estimated 
annual mean PM2.5 concertation in Shanghai is approximately − 2.3μg 
m− 3, indicating a slight underestimation of 6.4 % in PM2.5 levels in 
Shanghai. Attribution of total modeled PM2.5 to sources that do not 
include biogenic SOA may uniformally overestimate contributions from 
other species by a similar amount. While the uncertainty in estimating 
PM2.5 exposure has been reduced, the adjoint model’s PM2.5 source- 
receptor sensitivities still depend on the accuracy of model’s chemical 
and physical schemes, meteorology, and emissions, the effects of which 
are difficult to isolate. As Table S1 suggested, the overall bias caused by 
these factors ranges from 0.1 to 9.8 μg m− 3 across different sites in 
Shanghai, which suggests a 0.3–28.5 % overestimation of exposure and 
thus health impacts. While estimating the marginal sensitivity changes 
during 2013–2019 (i.e., Fig. 6), we only account for the impacts of 
anthropogenic emission changes. Even though the PM2.5 source contri
bution can be affected by interannual variability in meteorology under 
actual conditions, we consider our results to be robust since meteorology 
is reported to only account for 3 % of the PM2.5 changes in Yangtze River 
Delta region during 2013–2018 (Zhai et al., 2019).

Uncertainties in estimating the health benefits stem from un
certainties in baseline mortality rates, population, and the exposur
e–response function (ERF). We adopt the 95 % confidence interval from 
GEMM (Burnett et al., 2018) to calculate the uncertainty bounds of the 
PM2.5-related premature deaths (NCD + LRI) in this study. The popu
lation data is from the National Bureau of Statistics of China, which we 
consider to be robust. The uncertainty of our health estimates (both total 
and provincial) is thus ± 50 % considering those related to the ERF and 
baseline mortality. As the local mortality data is not available for 
Shanghai, we use the country-level mortality rate data from the GBD 
Results Tool (https://vizhub.healthdata.org/gbd-results/, last access: 29 
March 2024) and provincial Disability-Adjusted Life Years (DALYs) data 
from Zhou et al. (2019) to estimate the health outcomes attributable to 
PM2.5 exposure in the city. As is discussed in Fig. S1 and Text S1, this 
approach can lead to an additional uncertainty ranging from − 22.1 % to 
− 5.1 % in estimating PM2.5-related premature deaths from different 
health outcomes in Shanghai. For comparison with the GBD study, 
GEMM provides a separate ERF for each of the five health outcomes 
(COD5) that comprise the GBD attributable death estimates: chronic 

obstructive pulmonary disorder, ischemic heart disease, LRI, lung can
cer, and stroke. In 2019, the annual mean PM2.5 exposure leads to 9,380 
(5,018–14,728) premature deaths from COD5 in Shanghai. The 
improvement in PM2.5 air quality between 2013 and 2019 leads to an 
avoided 3,662 (2,278–4,577) premature deaths from COD5 within the 
city. We apply the ERF for NCD and LRI in this study since it comprises a 
broader set of health outcomes and exhibits smaller uncertainty in 
premature death estimates.

4. Conclusions

In this study, we use GEOS-Chem and its adjoint to characterize the 
role of local and distant anthropogenic emissions on health impacts 
associated with PM2.5 in Shanghai. As of 2019, the PM2.5-related health 
burden in Shanghai remains substantial, where the PM2.5 air pollution 
leads to 15,782 (10,467–22,219) premature deaths from NCD and LRI. 
Our results suggest that a 10 % decrease in anthropogenic emissions 
throughout China can avoid 752 (506–1,044) PM2.5-related premature 
deaths in Shanghai. Within these benefits, contributions from anthro
pogenic emissions within Shanghai itself avoid 241 (161–334) prema
ture deaths.

NH3 emissions are found to be a dominant contributor to the PM2.5- 
related health impacts in Shanghai. As PM2.5 formation in the city is 
highly NH3-limited, the PM2.5 exposure there is very sensitive to changes 
in local NH3 emissions rather than NOx. Controlling NH3 emissions from 
local sources is thus an effective approach to reduce the population’s 
exposure to PM2.5. Despite the relatively low levels of emissions, the 
marginal contributions of NH3 emissions from local residential, trans
portation, and industrial sectors are still substantial, accounting for 19.2 
% of the marginal contributions associated with local emissions. Even 
with the existing control policies, NH3 emissions from local residential 
and transportation sectors aren’t going down in Shanghai. Reducing 
NH3 emissions in these sectors, in addition to agricultural emissions, can 
also be crucial for lowering PM2.5-related health burden at the city level. 
Reducing local NOx emissions during wintertime increases the PM2.5- 
related health risks in Shanghai due to the feedback of NOx on oxidant 
concentrations. However, controlling NOx emissions are still justified as 
the negative impacts decrease as the anthropogenic emissions are 
declining. Given the high levels of NOx emissions, continuous efforts in 
controlling local NOx emissions are still needed for coordinated PM2.5 
and O3 control at the city level.

Fig. 8. Premature deaths (NCD + LRI) avoided in Shanghai by sectoral and species emission changes in different provinces during 2013 to 2019. Results for 
provinces where the anthropogenic emission changes cause the top 20 largest decreases in PM2.5-related premature deaths in Shanghai are shown. The number of 
health benefits for each bar is listed in Table S3.
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The effect of regional emission control exhibits seasonal variations 
due to the varied sensitivity of PM2.5 exposure in Shanghai to species 
emissions. Controlling NH3 emissions is more effective in winter while 
reducing NOx and SO2 emissions in nearby provinces (e.g., Jiangsu and 
Zhejiang) brings more health benefits in summer. Additionally, SOAP 
emissions are found to be crucial for reducing the population’s exposure 
to PM2.5 pollution, accounting for 12.7–19.8 % of the marginal contri
butions of industrial sources. As a result of the Clean Air Actions, 
anthropogenic emissions of most PM2.5 precursors decrease in China 
during 2013–2019, which helps avoid 3,132 (2,108–4,346) PM2.5- 
related premature deaths in Shanghai in 2019 relative to 2013. Despite 
these improvements, anthropogenic emissions from specific sectors (e. 
g., NH3 emissions from the transportation sector) still need to be further 
regulated to safeguard the welfare of Shanghai.
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