
1.  Introduction
Ground-level ozone (O3) is a secondary gas pollutant generated by photochemical reactions of nitrogen 
oxides (NOx) and volatile organic compounds (VOCs) (Atkinson, 2000; Sillman, 1999), detrimental to both 
human health (Dang & Liao, 2019; Lelieveld et al., 2015; Lu et al., 2020) and ecosystem productions (Fuhrer 
et al., 1997; Lombardozzi et al., 2012; Yue et al., 2017). Since 2013, strict clean-air actions were implemented 
in China to alleviate the severe particulate pollution (Zheng et al., 2018) but bring little benefits to O3 con-
trol (Li et al., 2019). With the increasing O3 loading over China (Liu & Wang, 2020a, 2020b; Lu et al., 2018), 
the regional O3 pollution episodes (OPEs, defined in this work as episodes that last for 5 days or longer and 
during which the regionally averaged maximum daily 8-h average (MDA8) O3 concentrations exceed 80 
ppbv) showed increases in frequency and persistence (Gong & Liao, 2019; Gong et al., 2020b). However, 
alleviation of O3 pollution remains a challenge considering the nonlinear effects of NOx-VOCs reactions 
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(Wang et  al.,  2019,  2017) and the significant contributions from natural sources (Lu et  al.,  2019; Wang 
et al., 2011).

Terrestrial vegetation acts as both sources and sinks of surface O3. On one hand, biogenic VOCs (BVOCs) 
emitted by vegetation, such as isoprene and terpenes, are important precursors of O3 (Calfapietra et al., 2013) 
(Process one in Figure 1). A recent study estimated that BVOCs emissions contributed about 15 ppbv to 
the MDA8 O3 concentrations in eastern China over July-August in 2016–2017 (Lu et  al.,  2019). On the 
other hand, the stomatal O3 uptake by vegetation (Process 2 in Figure 1) is a major process for surface O3 
removal, which contributes about 40–60% on average to the global O3 dry deposition (Fowler et al., 2009). 
However, current atmospheric chemistry models mostly parameterize O3 stomatal deposition as a function 
of air temperature and water vapor (Wesely & Hicks, 2000) in default, although several recent studies tried 
to connect O3 dry deposition velocity ( d,O3V ) dynamically to vegetation biophysics in CMAQ (Emberson 
et al., 2013; Huang et al., 2016), CESM coupling Community Land Model (CLM) (Sadiq et al., 2017; Val 
Martin et al., 2014) or GFDL-AM4-LM4.0 model (Lin et al., 2020).

The O3 injury to vegetation (Process three in Figure 1), through impairing photosynthetic enzyme activities 
(Ainsworth et al., 2012; Wittig et al., 2007), reducing stomatal conductance (Lombardozzi et al., 2012) and 
injuring vegetation leaf area index (LAI) (Feng et al., 2019a; Yue & Unger, 2014), influences both BVOCs 
emissions (Process one in Figure 1) and O3 stomatal dry deposition (Process two in Figure 1) and hence 
results in a feedback onto O3 level. Previous studies showed that the O3 damage to photosynthesis and 
stomata reduces the stomatal dry deposition (the right hollow arrow in Figure 1) and enhances summer-
time-mean surface O3 concentrations by as high as 5–6 ppbv (Clifton et al., 2020; Gong et al., 2020a; Sadiq 
et al., 2017). However, the effects of O3 exposure on BVOC emissions (the left dashed-line arrow in Fig-
ure 1) remain highly uncertain. Observations showed that BVOC emissions could increase under high and 
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Figure 1.  Summary of the vegetation processes contributing to surface O3. Process one indicates the BVOCs emissions 
by vegetation, which is enhanced during OPEs by warm weather; Process two indicates the stomatal O3 uptakes 
(important parts in O3 dry deposition), which is reduced during OPEs due to the dry condition. Process three indicates 
the O3 vegetation damages, which would lead feedbacks on surface O3 by influencing Process 1 (left dashed-line arrow, 
not considered in this study due to the large uncertainties) and Process 2 (right hollow arrow). VOC, volatile organic 
compounds; BVOCs, biogenic VOCs; OPEs, ozone pollution episodes.
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acute O3 concentrations (Fares et al., 2010; Velikova et al., 2008) but decrease with long-term O3 exposure 
(Feng et al., 2019b; Wang et al., 2020; Yuan et al., 2017). Current vegetation models generally lack proper 
parameterization schemes to describe such effects. Gong et al. (2020a) considered the impact of O3 damage 
to vegetation on isoprene emissions in a fully coupled carbon-chemistry-climate model and found a small 
feedback onto simulated O3 concentration. Therefore, the impact of vegetation damage by O3 on BVOC 
emissions is not considered in this study.

OPEs tend to occur under hot and dry weather conditions (Gong & Liao, 2019; Liu et al., 2019; Pu et al., 2017; 
Zhang & Wang, 2016), which not only accelerate photochemical reactions (Jacob & Winner, 2009; Pusede 
et al., 2015) but also stimulate vegetation to emit more BVOCs (enhancing Process one in Figure 1) (Ma 
et al., 2019) and to close stomata (weakening process two in Figure 1) (Lin et al., 2020; Porter & Heald, 2019). 
Nevertheless, how changes in emissions of BVOCs (Process 1) and dry deposition of O3 (Process 2) would 
alter O3 concentrations during OPEs relative to the seasonal mean remain unclear. In addition, whether the 
O3 damages to vegetation (Process 3) would be amplified and the resulted influence on O3 concentration by 
altering dry deposition during severe OPEs needs to be examined.

During the warm seasons (May-October) in 2014–2017, North China (36°N–40.5°N, 114.5°E–119.5°E) and 
Yangtze River Delta (YRD) (29°N–33°N, 118°E–122°E) region were the most polluted regions by O3 in China 
(Figure S1). Meanwhile, O3 exposure during severe OPEs in these two regions with dense population is an 
urgent threat to public health (Chen et al., 2021; Kuerban et al., 2020; Liao et al., 2017). Following our defi-
nition of OPEs (Gong et al., 2020b), 10 and 5 OPEs occurred over North China and YRD, respectively (Ta-
ble S1). We simulate O3 concentrations over 2014–2017 by using the updated 3-D chemical transport model 
GEOS-Chem coupled with the Yale Interactive terrestrial Biosphere model (GC-YIBs) (Lei et al., 2020) with 
fine resolution (0.5° latitude × 0.625° longitude) over Asia (11°S–55°N, 60°E–150°E). We aim to comprehen-
sively quantify (1) the contributions of Processes 1 and 2 to O3 concentrations during OPEs relative to the 
seasonal mean; (2) the differences in O3 concentrations with and without the O3 damage to photosynthesis 
and stomatal conductance for both seasonal mean and OPEs.

2.  Materials and Methods
2.1.  Observed O3 Concentrations

Ground-based hourly O3 concentrations observed over May-October in 2014–2017 were obtained from the 
observational network of the China Ministry of Ecology and Environment (http://datacenter.mee.gov.cn/). 
Among more than 1,500 national sites, 717 with reasonable temporal coverage were selected (Figure S1) 
to calculate MDA8 O3 concentrations. The criteria were as follow: (1) At least 6-h valid observations were 
required for the calculation of daily MDA8 O3 concentration; (2) More than 15 days had valid MDA8 O3 
values in each month for individual site.

2.2.  GC-YIBs Model

GEOS-Chem model employs a fully coupled NOx-Ox-hydrocarbon-aerosol chemistry mechanism to simu-
late concentrations of gas-phase pollutants and aerosols at 47 vertical layers up to 0.1 hPa (Bey et al., 2001; 
Park et al., 2003; Pye et al., 2009). Photolysis rates are computed by Fast-JX scheme (Bian & Prather, 2002). 
Dry deposition for gases and aerosols is diagnosed based on the resistance-in-series scheme (Wesely, 1989) 
in the base version. BVOC emissions employ the MEGAN v2.1 biogenic emissions inventory with updates 
from Guenther et al. (2012). Following Dang et al. (2021), the global anthropogenic emissions inventory 
is from Community Emissions Data System (CEDS), while the latest Multiresolution Emission Inventory 
(MEIC, http://www.meicmodel.org) (Zheng et al., 2018) over 2014–2017 is used in China and the MIX in-
ventory (Li et al., 2017) is used in the rest regions of Asia.

YIBs model is a terrestrial vegetation model including nine plant functional types (PFTs) that can simu-
late biophysical process (such as photosynthesis, transpiration, and respiration) and dynamically predict 
LAI and tree height. Leaf-level photosynthesis is calculated by Farquhar and Ball-Berry models schemes 
(Ball et al., 1987; Farquhar et al., 1980). Semimechanistic O3 damage scheme (Sitch et al., 2007) is used 
to quantify O3 vegetation damage, which is dependent on stomatal O3 uptake among different PFTs (Yue 
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& Unger, 2015). In Sitch et al. (2007) scheme, there are two sets of parameters representing high and low 
sensitivities of vegetation to O3 damages. Here we utilize parameters with high O3 sensitivity to assess the 
maximum potential feedback of O3-vegetation interactions.

GC-YIBs is a newly developed chemistry-biosphere model (Lei et al., 2020) driven by version two of Mod-
ern Era Retrospective-analysis for Research and Application (MERRA2) assimilated meteorological data 
(Molod et al., 2015). For the coupling of GC-YIBs, while the GEOS-Chem model provides simulated O3 
concentrations at each time step to drive YIBs model, YIBs updates LAI and stomatal conductance for GE-
OS-Chem to calculate O3 stomatal dry deposition dynamically. Simulated gross primary productivity (GPP), 
LAI, and O3 dry deposition velocity from the GC-YIBs model have been evaluated in Lei et al. (2020). Here, 
we extended the global version of GC-YIBs with resolution of 4° latitude × 5° longitude to the nested ver-
sion with resolution of 0.5° latitude × 0.625° longitude over Asia (11°S–55°N, 60°E–150°E), whose bound-
ary conditions are provided by global simulations at a 2° latitude × 2.5° longitude horizontal resolution. 
The satellite-based land types and cover fraction are aggregated into the nine PFTs and replace the Olson 
et al. (2001) land cover map in GEOS-Chem (Figure S2).

2.3.  Sensitivity Experiments

We first performed two simulations over May to October in 2014–2017 with GEOS-Chem (named EX_GC) 
and GC-YIBs (named EX_GC-YIBs) models without O3 damage to vegetation to evaluate the performance 
of nested GC-YIBs with fine resolution of 0.5° × 0.625°. Then the O3 damage effects on vegetation were 
turned on in GC-YIBs model (named EX_GC-YIBs-damage) to quantify the differences in O3 concentrations 
with and without O3 vegetation damages. All three experiments were spin up for 5 months in each year.

In addition, four sensitivity experiments were performed to isolate the differences in O3 concentration re-
sulted from the changes in BVOC emissions and O3 dry deposition velocity ( d,O3V ) during OPEs relative 
to the seasonal mean. These runs started from one day before each of the OPEs to the final day of the epi-
sode with the same configurations as EX_GC-YIBs, except that BVOC emissions (CASE_BVOCs-fixed-NC, 
CASE_BVOCs-fixed-YRD) or d,O3V  (CASE_Vd-fixed-NC, and CASE_Vd-fixed-YRD) were fixed to the sea-
sonal mean (May-October) values (seasonal-mean values were taken from EX_GC-YIBs simulation). The 
differences in MDA8 O3 concentrations between EX_GC-YIBs simulation and these sensitivity experiments 
are used to diagnose the role of O3-vegetation interactions in the enhancements of O3 during OPEs. BVOCs 
species from MEGAN that are used in GC-YIBs are shown in Table S2. All experiments are summarized in 
Table 1.
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Name BVOCs emissions d,O3V O3 damages to vegetation

Continuous simulations over May to October in 2014–2017

EX_GC MEGAN W89a None

EX_GC-YIBs MEGAN W89a+Dynamic YIBsb None

EX_GC-YIBs-damage MEGAN W89a+Dynamic YIBsb Sitch et al. [2007] scheme

Simulations from 1 day before to the end of OPEs

CASE_BVOCs-fixed-NC Fixedc W89a+Dynamic YIBsb None

CASE_BVOCs-fixed-YRD Fixedc W89a+Dynamic YIBsb None

CASE_Vd-fixed-NC MEGAN Fixedc None

CASE_Vd-fixed-YRD MEGAN Fixedc None
aW89 indicates the Wesely (1989) dry deposition scheme. bDynamic YIBs scheme is the same as W89 except dynamically 
updating the leaf area index and stomatal conductance from the YIBs model. cThe BVOCs emissions or d,O3V  values 
are fixed in the seasonal-mean values from EX_GC-YIBs during each OPE.

Table 1 
Summary of the Model Experiments in This Study
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3.  Results and Discussions
3.1.  Model Evaluation

Previous studies have evaluated the GC-YIBs model at coarser resolution with global observations and 
showed that the coupling of GEOS-Chem with YIBs improves the temporal variability of d,O3V  (Lei 
et al., 2020). Here, we continue to evaluate the performance of nested GC-YIBs over Asia with fine res-
olution of 0.5° latitude  ×  0.625° longitude. Observed ozone fluxes at four sites in China, Thailand and 
Borneo are used to evaluate simulated d,O3V  (Table S3). Both the GEOS-Chem and the GC-YIBs capture the 
magnitude of monthly mean d,O3V  with biases ranging from −0.12 to +0.13 cm s−1. GC-YIBs shows better 
performance than GEOS-Chem in most sites (Table S3). Especially, GC-YIBs is able to capture the variations 
in d,O3V  between dry and wet season. However, observational sites with d,O3V  are quite sparse over Asia 
(Clifton et al., 2020), limiting our evaluation of d,O3V  at the regional scale. As an alternative, we assess the 
simulated O3 concentrations with the updated vegetation processes.

Figure  S3 compares the simulated seasonal-mean d,O3V  between GC and GC-YIBs model. The coupling 
of GC-YIBs increases d,O3V  over China compared to the GEOS-Chem model (Figure S3c). Following such 
changes, correlation coefficients and normalized mean biases (NMBs) between observed and simulated 
MDA8 O3 concentrations at individual sites are improved in GC-YIBs. The correlation coefficients show a 
widespread increase (Figure S3f). Averaged over the 717 sites in the whole China, the NMB is reduced from 
21.4% in GEOS-Chem to 17.9% in GC-YIBs (Figure S3i). It suggests that the increased d,O3V  as a result of 
dynamically updating YIBs LAI and stomatal conductance in Wesely (1989) scheme alleviates the overesti-
mates of seasonal-mean MDA8 O3 concentrations in GEOS-Chem.

We further evaluate the daily time series of MDA8 O3 concentrations over North China and YRD (Fig-
ure S4). The correlation coefficient between the observed and simulated regional mean daily MDA8 O3 con-
centrations by GC-YIBs is 0.83 in North China and 0.80 in YRD, indicating GC-YIBs model is able to capture 
daily variations of O3. The O3 levels during OPEs are underestimated with NMB of −17.4% in North China 
and −14.6% in YRD. The difficulty of capturing peak O3 concentrations during OPEs is a common issue in 
current air quality models including the GEOS-Chem model (Gong & Liao, 2019; Ni et al., 2018; Zhang & 
Wang, 2016), WRF-Chem (Tie et al., 2009), and WRF-CMAQ model (Shu et al., 2016).

3.2.  Contributions of Enhanced BVOCs and Reduced Vd O, 3
 to OPEs

The 10 OPEs in North China and 5 OPEs in YRD from EX_GC-YIBs experiment are composited first to ex-
amine the differences in environmental conditions, such as daily maximum 2-m temperature (Tmax), daily 
mean relative humidity (RH), BVOC emissions and d,O3V , between OPE periods and seasonal mean (Fig-
ures S5 and S6). With high temperature during OPEs, BVOC emissions increase, respectively, 2.6 × 10−6 kg C 
m−2 day−1 (60.5%) and 8.0 × 10−6 kg C m−2 day−1 (90.0%) over North China and YRD compared to season-
al-mean; while the dry weather leads to reductions in stomatal conductance of vegetation and thus weakens 
O3 sinks (reducing dry deposition velocity by 0.013 (5.2%) in North China and by 0.041 cm s−1 (14.2%) in 
YRD compared to seasonal mean). These two processes further enhance O3 levels during OPEs.

By performing the sensitivity experiments as described in Section 2.3, we first defined the differences in 
MDA8 O3 concentrations in EX_GC-YIBs between OPEs and seasonal-mean as the O3 enhancements dur-
ing OPEs, which can be further divided into vegetation contributions (including the impacts of increased 
BVOCs or reduced d,O3V  during OPEs) and nonvegetation contributions (the residual part, indicating pro-
cesses such as increases in chemical reaction rates, (Fu et al., 2015; Gong & Liao, 2019) and regional trans-
ports (Gong et  al.,  2020b; Han et  al.,  2018)). Figure  S7 shows that the averages of simulated MDA8 O3 
enhancements during OPEs are 16.7 and 16.6 ppbv in North China and YRD, respectively, of which the 
increases in BVOCs on average promote MDA8 O3 concentrations during OPEs by 0.45 ppbv (2.7% of the 
O3 enhancement) in North China (EX_GC-YIBs minus CASE_BVOCs-fixed-NC) and 2.4 ppbv (14.5% of 
the O3 enhancement) in YRD (EX_GC-YIBs minus CASE_BVOCs-fixed-YRD). Such increases in O3 caused 
by changes in BVOC emissions can reach as high as 4.7 ppbv (OPE #8 in Table S1 and 28.1% of the O3 en-
hancement) in North China and 7.6 ppbv (OPE #5 in Table S1 and 45.8% of the O3 enhancement) in YRD. 

GONG ET AL.

10.1029/2021GL093814

5 of 11



Geophysical Research Letters

Reduced dry deposition on average promotes 0.95 ppbv (5.7% of the O3 enhancement, EX_GC-YIBs minus 
CASE_Vd-fixed-NC) and 1.4 ppbv (8.4% of the O3 enhancement, EX_GC-YIBs minus CASE_Vd-fixed-YRD) 
in these two regions. Overall, the joint vegetation processes increase MDA8 O3 during OPEs by 1.4 ppbv 
(8.4% of the O3 enhancement) in North China and 3.8 ppbv in YRD (22.9% of the O3 enhancement). The 
higher values in YRD than in North China can be attributed to the higher forest coverage in that region 
(Figure S2).

Figure 2 further shows vegetation and nonvegetation contributions for each OPE (Figures 2a and 2c) as well 
as under different O3 pollution levels (Figures 2b and 2d). In North China, vegetation contributes little (0.8–
2.4 ppbv) to ambient O3 concentrations (Figure 2b). In YRD region, vegetation-induced O3 enhancement 
varies from 0.9 ppbv (12.5% of the averaged O3 enhancement of 7.2 ppbv) in slightly polluted days (MDA8 
O3 concentrations at the first quartile of OPEs) to 7.1 ppbv (27.0% of the O3 enhancement 26.3 ppbv) in the 
most polluted days (MDA8 O3 concentrations at the last quartile of OPEs) (Figure 2d). It further suggests 
that vegetation-induced O3 enhancement during OPEs is larger in YRD region than in North China.

3.3.  Feedback to Surface O3 Caused by O3 Damages to Vegetation

Figure 3 shows differences in MDA8 O3 concentrations between EX_GC-YIBs-damage and EX_GC-YIBs 
experiments, which represent the feedback of O3 vegetation damages onto surface O3 concentrations. The 
feedback is positive because O3 inhibits plant stomatal conductance and consequently reduces O3 dry 
deposition (Gong et al., 2020a; Sadiq et al., 2017). As a result, seasonal-mean enhancement in MDA8 O3 
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Figure 2.  Contributions of vegetation (enhanced BVOC emissions and reduced stomatal dry deposition) and nonvegetation processes during OPEs. 
Nonvegetation contributions are defined as the residue subtracting vegetation contributions from the simulated total MDA8 O3 enhancements during OPEs. 
(a) and (c) shows the averaged vegetation and nonvegetation contributions over each OPE in North China and YRD, respectively. The OPE numbers are 
following Table S1. (b) and (d) sorts all days during OPEs by simulated MDA8 O3 concentrations in each region and then equally divides them into four bins. 
Contributions under different MDA8 O3 levels are exhibited. The uncertainty bars include all of the daily vegetation contributions at each OPE or bin. VOC, 
volatile organic compounds; BVOC, biogenic VOC; OPEs, ozone pollution episodes; MDA8, maximum daily 8-h average; YRD, Yangtze River Delta.



Geophysical Research Letters

concentrations was 0.2 ppbv (0.3% relative to seasonal mean) in North China and 0.7 ppbv (1.1% relative to 
seasonal mean) in YRD region (Figure 3a). However, such enhancement does not exacerbate during OPEs 
(Figures 3b and 3c) despite the higher O3 concentrations during OPEs.

We further explore the relationships among MDA8 O3 concentrations, RH, and the O3 enhancement in-
duced by O3 vegetation damages (Figure s8). Strong feedbacks generally occur in days with moderate to 
high O3 levels and wet conditions (RH exceeding 60%) in both North China and YRD. Dry weather favors 
the occurrence of OPEs (Gong & Liao, 2019; Liu et al., 2019), but meanwhile increases water stress and 
stimulates vegetation to close stomata to prevent water loss (Li et al., 2019; Matyssek et al., 2006). The re-
duced stomatal conductance leads to lower stomatal O3 uptake, buffering the damages from increased O3. 
As a result, the feedback induced by O3 vegetation damages has limited contributions to the O3 enhance-
ments during OPEs.

In summary, we applied a newly developed chemistry-biosphere coupled model (GC-YIBs) to quantify the 
contributions of changes in BVOC emissions and stomatal dry deposition in the presence/absence of O3 
vegetation damages to the O3 enhancements during OPEs over May to October of 2014–2017 in North 
China and YRD. Compared to the seasonal mean, the increased BVOC emissions by high temperature and 
reduced d,O3V  by low RH during OPEs together enhanced MDA8 O3 concentrations by 1.4 ppbv in North 
China and 3.8 ppbv in YRD. The maximum total contributions at some specific days could exceed 10 ppbv. 
The O3 damages to photosynthesis and stomata on average led to an increase in MDA8 O3 of 0.2 ppbv in 
North China and of 0.7 ppbv in YRD, but such increases were not exacerbated during OPEs because the 
reduced stomatal conductance under dry weather inhibits O3 uptake and thus buffers the high O3 damages. 
Our results highlight the important contributions of vegetation processes to the persistent OPEs in eastern 
China.

Our simulated vegetation contributions to OPEs show comparable magnitude as other processes, especially 
for the YRD region with high vegetation cover. For instance, regional O3 transports were reported to contrib-
ute about 36% of O3 enhancement during OPEs in North China (Gong et al., 2020b), while results from this 
work show that vegetation processes account for 8.4% of O3 enhancement during OPEs in North China and 
22.9% of that in YRD (Figures 2 and S7). Furthermore, reduced stomatal dry deposition was found to pro-
mote MDA8 O3 up to 8 ppbv in Europe during extremely drought events (Lin et al., 2020). It should be noted 
that the vegetation contributions to OPEs may still be underestimated in our study, because some positive 
feedbacks (e.g., the increased leaf temperature by closed stomata, Gong et al., 2020a; Sadiq et al., 2017, and 
the enhanced isoprene from water stress, Zhang & Wang, 2016) are not considered.

Although the influences of BVOCs emissions (e.g., Liu et al., 2018; Lu et al., 2019) and stomatal O3 uptakes 
(e.g., Kavassalis & Murphy, 2017; Lin et al., 2020; Silva & Heald, 2018) on ground-level O3 concentrations 
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Figure 3.  The feedbacks onto MDA8 O3 concentrations induced by O3 damage effects to vegetation (a) averaged over May to October in 2014–2017 and during 
OPEs in (b) North China and (c) YRD regions. The regionally averaged values over North China (NC) and YRD are given in the left corner, respectively. The 
blue lines enclose North China and YRD, respectively. MDA8, maximum daily 8-h average; OPEs, ozone pollution episodes; YRD, Yangtze River Delta.
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were examined separately by previous studies, few studies investigated the two effects together and con-
sidered the feedbacks induced by O3 vegetation damages, especially for the OPEs under extreme weather 
conditions such as heat waves and drought. For O3 pollution in China, there existed studies that investigated 
the impact of vegetation on O3 by enhanced BVOC emissions at warm temperatures for limited episodes 
(e.g., Lyu et al., 2019; Ma et al., 2019; Pu et al., 2017). We present, to our knowledge, the first study to com-
prehensively examine the vegetation contributions, including processes of BVOCs emissions and stomatal 
O3 dry depositions, to OPEs by compositing all episodes during warm season.

Our study suggests that about 1/4 of O3 enhancement during OPEs in YRD is related to vegetation pro-
cesses. As a result, strong reductions in anthropogenic VOCs are required to offset the contributions led by 
increased BVOCs during OPEs, especially in regions with high vegetation cover. Furthermore, continuous 
and valid O3 dry deposition observations would be urgent and necessary in China to further calibrate the 
vegetation contributions during OPEs.
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