
1.  Introduction
Tropospheric ozone (O3) is an important secondary air pollutant detrimental to both human health (Fleming 
et al., 2018; Kuerban et al., 2020; Lelieveld et al., 2015) and terrestrial ecosystems (Gong, Yue, et al., 2021; 
Lombardozzi et  al.,  2015; Yue et  al.,  2017). It is produced by photochemical reactions of nitrogen dioxide 
(NOx = NO + NO2) and volatile organic compounds (VOCs) (Kleinman et al., 2002; Sillman, 1999) and removed 
by redox chemical reactions and deposition processes (Clifton et al., 2020; Jacob & Winner, 2009). Currently, 
eastern China is confronted with the most severe O3 pollution in the world (Lu et al., 2018). Since 2013, the 

Abstract  The warming climate increases the probability of hot days, which leads to a penalty effect of 
increasing ozone (O3)-polluted days in polluted regions. Here, we established a random forest algorithm 
to predict future probabilities of O3 exceedance (P) during hot days and further examined the future 
co-occurrences of O3-polluted days and hot days under two different scenarios of Shared Socioeconomic 
Pathways (SSPs) 1-2.6 and 5-8.5 for 2030–2050s. Ground-level observations, simulated O3-temperature 
sensitivities in the GEOS-Chem model, multimodel seasonal-mean O3 concentrations and daily maximum 
temperature from the sixth Coupled Model Intercomparison Project (CMIP6), leaf area index from reanalyzed 
data, and local geographical information were comprehensively utilized. Evaluations showed that the algorithm 
captured the spatial patterns of present-day P values well with a correlation coefficient of 0.92 over China. 
Results showed that the strong reductions in anthropogenic emissions under SSP 1-2.6 significantly reduced 
the risks of O3 exceedance during hot days nationwide from 3.7 days in the 2030s to 3.0 days in the 2050s. 
However, the SSP 5-8.5 scenario witnessed more frequent co-occurrences of O3-polluted days and hot days over 
the 2030–2050s with nationally averaged values from 4.5 to 6.4 days. Our results highlight the co-benefits of 
reducing anthropogenic emissions to alleviate the composite risks of extreme weather events and air-polluted 
days in the future.

Plain Language Summary  Temperature is generally considered as the most important 
meteorological factor that influences ground-level ozone (O3) concentrations. A warmer climate is highly 
likely to lead to frequent occurrence of hot days, which could further increase ozone-polluted days in regions 
with high anthropogenic emissions. The co-occurrences of O3-polluted days and hot days lead to composite 
risks to human health, but how such co-occurrences will change in the future is rarely examined. Here, we 
established a novel machine-learning approach by using a random forest algorithm to quantify the probability 
of O3 exceedance (P) during hot days and then predicted the future co-occurrence of O3-polluted days and hot 
days under two different future emission scenarios (Shared Socioeconomic Pathways [SSP]1-2.6 and SSP5-
8.5). Multisource data, including ground-level observations, reanalyzed data, GEOS-Chem simulations, and 
multimodel outputs from Coupled Model Intercomparison Project, were comprehensively utilized. We found 
that the random forest algorithm was capable to derive a reasonable pattern of P values over China. Composite 
risks of O3 exceedance during hot days are projected to be reduced significantly in the future under the SSP 
1-2.6 scenario, whereas to keep increasing until the 2050s under the SSP 5-8.5 scenario.
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summertime mean O3 concentrations as well as the frequencies of O3-polluted days (defined as average maxi-
mum daily 8-hr (MDA8) O3 concentrations larger than 80 ppbv in this study based on Gong et al. (2020)) have 
been increasing over eastern China (Gong et al., 2020; Li et al., 2019; Lu et al., 2020). Understanding how global 
changes, especially changes in anthropogenic emissions and climate, influence the frequency of O3-polluted days 
is essential to execute proper control strategies.

Temperature was identified to have the strongest impacts on O3 concentrations among all meteorological factors 
in most regions with high anthropogenic emissions (Dawson et al., 2007; Shi et al., 2020; Steiner et al., 2006). 
High temperature increases O3 concentrations by processes that include enhancing biogenic emissions of volatile 
organic carbon (BVOCs) (Gong, Liao, et al., 2021; Ma et al., 2019) and accelerating chemical reactions (Wang 
et al., 2017). Specifically, O3-polluted days tend to occur on hot days (defined as daily maximum temperature 
(Tmax) exceeding 35°C in this study) (Pu et al., 2017; J. L. Schnell & Prather, 2017). For example, Solberg 
et  al.  (2008) examined the strong heat waves in June–August 2003 over Europe and showed that extremely 
high temperatures led to maximum O3 concentrations exceeding 230 μg m −3 at most observed sites. Analitis 
et al. (2014) analyzed data in nine European cities from 1990 to 2004 and showed that high O3 concentrations 
during hot days increased daily deaths by 54% among people aged 75–84 years compared to the deaths induced 
by hot days alone, suggesting composite health risks associated with co-occurrence of hot days and O3-polluted 
days.

The Sixth Assessment Report by the Intergovernmental Panel on Climate Change (IPCC) (https://www.ipcc.
ch/report/ar6/wg1/) showed that global temperature will continue to increase until 2050s even with the strictest 
emission control measures under scenarios of Shared Socioeconomic Pathways (SSPs) 1-1.9. A warmer climate 
has a high likelihood of bringing a “penalty effect” on O3 in polluted regions (Bloomer et  al.,  2009; Fu & 
Tian, 2019). For instance, Colette et al. (2015) composited projections of 25 models from 11 published studies 
and found that future climate scenarios have penalty effects on summertime surface O3 of at most 5 ppbv over 
Europe from 2071 to 2100. Schnell et al.  (2016) assembled projected O3 from four global models with fixed 
anthropogenic ozone precursors. They showed that warming under the RCP8.5 scenario increased the summer-
mean O3 of about 4–10 ppbv in eastern U.S, 1–5 ppbv in southern Europe, and 3–6 ppbv in northeastern Asia in 
the 2100s compared to the 2000s. To better indicate the intensity of the “climate penalty on O3,” Wu et al. (2008) 
proposed a “climate penalty factor,” which is represented by the sensitivity of O3 to Tmax (dO3/dT) and has been 
widely used (Bloomer et al., 2009; Fu et al., 2015; Gu et al., 2020; Rasmussen et al., 2013; Zhao et al., 2013). 
In addition, a warmer climate increases the probability of hot days (Ding et al., 2010; Perkins-Kirkpatrick & 
Lewis, 2020), which further increases the probability of the occurrences of severe O3-polluted days. However, to 
our knowledge, the future co-occurrence of O3-polluted days and hot days under different emission scenarios has 
rarely been examined.

Simulations of future hot days and future O3-polluted days usually rely on Earth System Models (ESMs) with 
fully coupled NOx-O3-hydrocarbon-aerosol chemical mechanisms (Meehl et al., 2018). However, current ESMs 
generally use a simplified O3 chemistry scheme (Lamarque et al., 2013) to reduce the computational burden, 
which would cause uncertainties in the simulated future O3. Furthermore, a quite limited number of ESMs (to our 
knowledge, only one model, namely UKESM1-0-LL) in the recent Sixth Coupled Model Intercomparison Project 
(CMIP6) simultaneously provide both future daily temperature and hourly O3 concentrations under different 
projected emission scenarios (e.g., SSP1-2.6 and SSP5-8.5) (https://esgf-node.llnl.gov/projects/cmip6/). Instead, 
the multimodel-predicted monthly mean Tmax and O3 concentrations, which potentially represent the risks of 
co-occurrence of hot days and O3-polluted days, are assessable. As a result, we aim to fully utilize the multimodel 
results to avoid the one-model dependence problem and better predict future co-occurrence of hot days and 
O3-polluted days.

In this study, we established a machine-learning approach by using a random forest algorithm to quantify the 
climatological risk level of O3 pollution during hot days and then further predicted the future co-occurrence 
of O3-polluted days and hot days under two different projected emission scenarios (SSP1-2.6 and SSP5-8.5). 
Section 2 describes the framework of this study based on the random forest algorithm and further introduces 
the data, including site-level observed data, reanalyzed meteorological data, simulations from the 3D global 
chemical transport model (GEOS-Chem), and multimodel results from CMIP6. In the results section, the current 
risk level of O3 pollution during hot days over China since 2013 is shown. Then, we establish and evaluate the 
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machine-learning approach and predict the future co-occurrence of O3-polluted days and hot days. Finally, we 
draw conclusions and discuss the uncertainties and implications of this study.

2.  Data and Methods
2.1.  Framework of Predicting the Future Co-Occurrences of O3-Polluted Days and Hot Days

In this study, we introduced the probability of O3 exceedance (P) during hot days to reflect the climatological 
risk level of co-occurrence of O3-polluted days and hot days. Present-day P can be represented by the following 
equation:

� = ���

��
× 100%� (1)

where HD is the number of hot days, and ODH is the number of O3-polluted days that occurred on all hot days 
at one specific site or grid. The P value is calculated only when the HD is larger than 3 days over May–October 
in 1 year.

We aimed to predict future P values through a framework of the random forest algorithm with the help of multi-
source data (Figure  1). To begin with, the random forest algorithm was trained and evaluated to predict the 
present-day P values in China over May–October in 2014–2019 based on observed data. Then, we applied the 
established random forest algorithm to predict future P values in the 2030, 2040s, and 2050s under SSP 1-2.6 
and SSP 5–8.5 scenarios with the help of GEOS-Chem simulations (providing O3-Tmax sensitivities) and CMIP6 
multimodel predictions (providing daily mean Tmax and monthly mean O3 concentrations). Finally, we derived 
future co-occurrences of O3-polluted days and hot days by multiplying future P values from the random forest 
algorithm and projected hot days in CMIP6 ensembles.

In particular, we applied the O3-Tmax sensitivities (S) following the definition in Wu et  al.  (2008) to better 
achieve the prediction of P:

[���8O3] = S × Tmax + b� (2)

Figure 1.  Summary of the procedures to predict future co-occurrences of O3-polluted days and hot days. The red parameters in the present day input indicate the 
selected parameters used in the random forest algorithm (see Table 1 and Section 3.2).
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where [MDA8 O3] and Tmax are the daily series of MDA8 O3 concentrations and Tmax over May–October at a 
specific site or grid, respectively; and S and b are the annual sensitivity of MDA8 O3 concentrations to tempera-
ture and the residuals, respectively, both of which are obtained by least square fitting. The present-day S values 
were derived from site-level observations (see details in Section 2.3), while the future S values under different 
scenarios were from GEOS-Chem simulations (see details in Section 2.4). Since S represents the enhancement of 
O3 concentrations with an increase in temperature of 1°C, high S values implied a high probability of the occur-
rence of O3-polluted days during hot days.

2.2.  Random Forest Algorithm

As a traditional machine-learning approach with the capability to solve complex regressions and classification 
problems, the random forest algorithm has been widely used in the field of atmospheric chemistry in recent years 
(Araki et al., 2018; Chen et al., 2018; Kaminska, 2019; Wang et al., 2019; Wei et al., 2019; Zhan et al., 2018). A 
random forest consists of a large number of individual decision trees, which are grown on dependent bootstrap 
samples from training data sets. Each decision tree divides bootstrap samples into branches through decision 
nodes until a leaf node is attained. Leaf nodes represent predicted estimates of one simple decision tree, and the 
mean prediction of the individual trees is determined as the regression output of the random forest algorithm 
(Breiman, 2001).

In this study, the function RandomForestRegressor of the python package scikit-learn was applied (Pedregosa 
et al., 2011). To predict the probability of O3 exceedance (P in Equation 1) during hot days, we composited a 
series of related predictors, including O3-Tmax sensitivity (S in Equation 2), latitude, longitude, seasonal-mean 
meteorological factors, O3 concentrations, reanalyzed leaf area index (LAI), and anthropogenic NOx and VOCs 
emissions, to test the random forest algorithm. The number of decision trees was 200. To be consistent with the 
future grid-level input data in the random forest model, we used the 1° × 1° (rather than site-level) predictors for 
2014–2017 from the observations and reanalysis as the training data and evaluated the random forest by using 
data in 2018–2019 with two indicators: correlation coefficient (R) and root mean square error (RMSE).

2.3.  Observed O3 and Meteorological Data

The ground-level hourly observed O3 concentrations were obtained from the monitoring network established by 
the Ministry of Ecology and Environment (MEE) of China (http://www.cnemc.cn). We then derived the MDA8 
O3 concentrations for all 1,582 sites (Figure S1 in Supporting Information S1) over May–October in 2014–2019 
and interpolated site-level data to 1° × 1° for further application in the random forest algorithm.

Four observed daily meteorological factors, namely the Tmax, daily mean relative humidity (RH), pressure 
(PRS), and wind speed (WS), were obtained from ground-level weather monitoring stations maintained by the 
China Meteorological Administration (http://data.cma.cn/). The meteorological data observed at more than 600 
sites (Figure S1 in Supporting Information S1) were interpolated into O3 observed sites by averaging the meteor-
ological values at the nearest five sites within a 2-degree square domain.

2.4.  GEOS-Chem-Simulated O3-Tmax Sensitivities

The GEOS-Chem model is a state-of-art 3D global chemistry transport model with good capabilities in simulat-
ing the spatiotemporal variations in gas phase pollutants and aerosols (Dang & Liao, 2019; Li et al., 2019; Porter 
& Heald, 2019). It is driven by MERRA2 reanalyzed data from the Goddard Earth Observing System (GEOS) 
of the NASA Global Modeling and Assimilation Office (GMAO) and employs a fully coupled NOx-Ox-hydro-
carbon-aerosol chemistry mechanism. The vertical resolution of GEOS-Chem is 47 layers from the surface to 
0.1 hPa. Photolysis rates are computed by the Fast-JX scheme (Bey et al., 2001; Park et al., 2003; Pye et al., 2009). 
Stratospheric O3 is simulated by linearized ozone parameterization (LINOZ) following McLinden et al. (2000). 
A nonlocal scheme in planetary boundary layers is applied to describe the vertical mixing process (Lin & McEl-
roy, 2010). The Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1) is utilized to dynami-
cally calculate biogenic VOCs emissions (Guenther et al., 2012).

In this study, we first performed simulations over May–October during 2014–2019 in the Asian nested domain 
(11°S–55°N, 60°–150°E) with horizontal resolutions of latitude 0.5° × longitude 0.625°. The lateral boundary 

http://www.cnemc.cn/
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layers of all chemical tracers were provided by global simulations at a resolution of 2° latitude × 2.5° longitude. 
Anthropogenic emissions over China were obtained from the annually updated Multi-resolution Emission Inven-
tory (MEIC, http://www.meicmodel.org) (Zheng et al., 2018). It should be noted that the present-day simulated 
results were not used in the random forest algorithm but were designed to evaluate model performance in simu-
lating O3-Tmax sensitivities and to further revise future simulated S values.

Since many previous studies have shown that the decadal variations in S values in polluted regions were deter-
mined by the changes in anthropogenic emissions (Bloomer et al., 2009; He et al., 2013; Jing et al., 2017; Rasmus-
sen et al., 2013; Wu et al., 2008), we further derived future S values from GEOS-Chem simulation with fixed 
meteorology in 2015 and future anthropogenic emissions (years 2030, 2040, and 2050) under SSP 1-2.6 and SSP 
5–8.5 scenarios. Furthermore, those simulations were only performed at a global resolution of 2° latitude × 2.5° 
longitude to better integrate data from climate-system models in CMIP6 with coarse horizontal resolutions.

2.5.  CMIP6 Multimodel Outputs

To perform a reasonable prediction of future changes in temperature and surface O3, we applied the daily Tmax 
data from 18 climate models in CMIP6 and the monthly mean surface O3 data from 11 chemistry climate coupling 
models (Table S1 in Supporting Information S1) (downloaded from https://esgf-node.llnl.gov/projects/cmip6/). 
Model outputs with the “r1i1p1f1” variant in two scenarios (SSP 1-2.6 and SSP 5-8.5) were selected. The hori-
zontal resolutions of variables from different models were integrated to a resolution of latitude 2° × longitude 
2.5° by bilinear interpolation. Seasonal-mean (May–October) values (such as Tmax and O3 concentrations) as 
well as the number of hot days were further derived for the present-day (2015), 2030s (averaged over 2028–2032), 
2040s (averaged over 2038–2042), and 2050s (averaged over 2048–2052).

2.6.  Auxiliary Data

Two sets of data were applied as an auxiliary to establish the random forest algorithm. One data set was the daily 
grid-level LAI from the MERRA2 reanalyzed data set with horizontal resolutions of latitude 0.5° × longitude 
0.625°, considering the significant impacts of vegetation on O3 as revealed by many previous studies (Gong, Liao, 
et al., 2021; Lin et al., 2020). The other data set was the monthly mean anthropogenic NOx and VOCs emissions 
from MEIC over 2014–2017. We scaled the MEIC emissions in 2018–2019 based on national emission trends 
reported by the MEE following Li et al. (2021).

3.  Results
3.1.  Present Day Probability of O3 Pollution During Hot Days Over China

Figures S2a and S2b in Supporting Information S1 show the seasonal mean MDA8 O3 concentrations and the 
number of hot days over May–October during 2014–2019 in China. The seasonal mean MDA8 O3 concentrations 
in North China (35°N–41°N and 110°E−120°E) were high and showed rapid increases from a regionally aver-
aged 51.9 ppbv in 2014 to 70 ppbv in 2019. Meanwhile, the number of hot days averaged over all observed sites 
in North China also showed an increasing trend from 6.8 days in 2014 to 12.4 days in 2019, which was reported as 
one of the important factors for explaining the increased O3 concentrations by previous studies (Wei et al., 2021).

Figure S2c in Supporting Information S1 shows that O3 exceedances became increasingly frequent during hot 
days over 2014–2019 in North China, where the P values sharply increased from 47.2% in 2014% to 88.9% in 
2019 on average. Considering the increasing number of hot days, the average co-occurrence of O3-polluted days 
and hot days in North China also increased from 3.2 (6.8*47.2%) days in 2014 to 11.0 (12.4*88.9%) days in 
2019. The increasing P may have been caused by many reasons. For example, increases in seasonal mean O3 
concentrations as well as O3-Tmax sensitivities (Figure S3 in Supporting Information S1) are likely important 
factors, and the changes in meteorology and anthropogenic emissions may also be influential. To quantify the 
complex and nonlinear relationships between P values and those potential predictors, the random forest algorithm 
was established and evaluated to predict the future risks of the co-occurrence of O3-polluted days and hot days.

http://www.meicmodel.org/
https://esgf-node.llnl.gov/projects/cmip6/
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3.2.  Establishment and Evaluation of the Random Forest Algorithm

We used the 1°  ×  1° grid-level data over 2014–2017 as the training data and designed eight random forest 
experiments (EX1-EX8) to select the most effective and essential predictors to predict P values. All experiments 
included the predictor of O3-Tmax sensitivity S because high S values implied a high probability of the occur-
rence of O3-polluted days during hot days. In EX1, only S was considered, and we further added latitude-longi-
tude geographic information, seasonal-mean O3 concentrations, Tmax, LAI, other meteorological factors (RH, 
PRS, and WS), and anthropogenic NOx and VOCs emissions step-by-step for EX2-8. A detailed description of 
each predictor is shown in Table S2 in Supporting Information S1. Table 1 shows the random-forest score (the 
coefficient of determination) and RMSE over all grids in China between the observed and random-forest-pre-
dicted P values during the warm season in 2018–2019. The variables S, latitude, longitude, and seasonal-mean 
O3 concentrations were the most effective predictors of P, and the score reached 0.72 and the RMSE decreased to 
15.5% in EX3. Including the seasonal mean Tmax and LAI slightly improved the performance of random forest 
although the other three meteorological factors as well as the anthropogenic NOx and VOCs emissions had oppo-
site effects. As a result, the configuration of EX5 was determined as the final random forest algorithm.

Figure 2 shows the spatial patterns of observation-derived and EX5-predicted P values averaged over May–Octo-
ber in 2018–2019. The observation-derived P values at the 1° × 1° grids (Figure 2a) were generally lower than 
the site-level observations (Figure S2c in Supporting Information S1) because the interpolation exaggerated the 
spatial scales and thus enhanced the difficulty of determining the co-occurrences of O3-polluted days and hot 
days at the grid level. The random forest algorithm captured the spatial distributions of P values (R = 0.92) well 
with a mean bias of −4.4% nationwide. However, the current random forest configuration underestimated the risk 
of O3 exceedance during hot days in extremely polluted regions, such as North China, where the predicted P value 
only reached 56.9% on average compared to the observed values of 73.5%.

3.3.  Processing of Simulated Input Data for Future Prediction

3.3.1.  GEOS-Chem-Simulated S Values

Since many previous studies have shown that GEOS-Chem can well simulate the spatial patterns as well as interan-
nual variations in seasonal-mean O3 concentrations (e.g., Li et al. (2019); Lu et al. (2019); Y. Wang et al. (2011)), 
we mainly focused on the evaluation of O3-Tmax sensitivity over 2014–2019. Figure S4a in Supporting Infor-
mation S1 shows high spatial correlations between site-level observed and GEOS-Chem-simulated S values with 
R = 0.75. However, the simulated S values were significantly underestimated, especially in severely polluted 

Name Predictors Score RMSE (%)

EX1 S 0.48 20.9

EX2 S, lat, lon 0.60 18.5

EX3 S, lat, lon, O3 0.72 15.5

EX4 S, lat, lon, O3, Tmax 0.73 15.2

EX5 S, lat, lon, O3, Tmax, LAI 0.75 15.0

EX6 S, lat, lon, O3, Tmax, LAI, Mete 0.72 15.7

EX7 S, lat, lon, O3, Tmax, LAI, Emis 0.74 15.3

EX8 S, lat, lon, O3, Tmax, LAI, Mete, Emis 0.72 15.2

Note. Detailed descriptions of each predictor are shown in Table S2 in Supporting Information S1. Score (the coefficient 
of determination) and RMSE were derived between the observed and random-forest-predicted P values on 1° × 1° grids 

in China averaged over May–October during 2018–2019 following these two formulas: Score = 1 −
∑

�
∑

� (���,�,� −����,�,�)2
∑

�
∑

�

(

����,�,� −����
)2  , 

RMSE =

√

∑

�
∑

� (����,�,� −���,�,�)2
�

 , where Pobs,i,j and Prf,i,j indicate the observed and random-forest-predicted P values in the gird 
with i latitude and j longitude. 𝐴𝐴 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 are observed P values averaged over all grids in China. n represents the total number of 
1° × 1° grids in China.

Table 1 
Eight Experiments of the Random Forest Algorithm Using Different Predictors
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regions such as North China, which were likely to be induced by the underestimates of extremely high O3 concen-
trations in GEOS-Chem when hot days occurred (Gong & Liao, 2019; Gong et al., 2020).

To alleviate the underestimates, we further revised the simulated S values in the present-day simulations and 
applied the revision in future GEOS-Chem simulations. To begin with, we found that the underestimates were 
mainly induced by regions with high S. For all grids with the observed S larger than 2 ppbv K −1, the mean 
observed S was 2.7 ppbv K −1, while the mean simulated S only reached 1.8 ppbv K −1. As a result, we applied a 
ratio of 1.5 (2.7/1.8) to revise the S values for all simulated girds and then kept S that is lower than 2 ppbv K −1 
unchanged as the original simulated values. In this way, the normalized mean bias was significantly reduced from 
−33.8% to −9.8% nationwide (Figure S4b in Supporting Information S1).

3.3.2.  Selection of CMIP6 Models

We selected 5 model outputs of Tmax from 18 CMIP6 models, including AWI-CM, CanESM5, CMCC-ESM2, 
INM-CM4-8, and MPI-ESM1-HR, by comparing the daily Tmax under the SSP 5–8.5 scenario in 2015 to MERRA2 
reanalyzed data over China following the three criteria: (a) correlation coefficients of seasonal mean Tmax between 
simulations and MERRA2 at all grids over China should exceed 0.5 (Figure S5 in Supporting Information S1); 
(b) the mean bias of seasonal-mean Tmax over China should be lower than 1°C (Figure S6 in Supporting Infor-
mation S1); and (c) the mean bias of hot days over China should be lower than 5 days (Figure S7 in Supporting 
Information S1). The comparison of MERRA2 to CMIP6 model outputs under the SSP 1-2.6 scenario is not shown 
here because similar patterns with SSP 5-8.5 were induced by the same anthropogenic climate forcings of 2015.

The patterns of seasonal-mean O3 concentrations from 11 chemistry climate models in 2015 are shown in 
Figure S8 in Supporting Information S1. Only 5 models showed valid O3 concentrations over the mainland, and 
MPI-ESM-2-HR and MPI-ESM-2-LR (also NorESM2-LM and NorEMS2-MM) were not independent of each 

Figure 2.  Spatial patterns of (a) observation-derived, (b) EX5-predicted P values, and (c) their differences averaged over 
May–October in 2018–2019. Numbers labeled “CH” and “NC” represent values averaged over China and North China 
(enclosed by black rectangles), respectively. (d) Linear regressions and spatial correlation coefficients between observations 
and random forest predictions. Each dot indicates a P value at one 1° × 1° grid.
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other. To obtain as much independent data from different models as possi-
ble, we averaged the simulated future O3 concentrations in BCC-CSM2-MR, 
MPI-ESM1-2-HR, NorESM2-LM, and the simulated O3 concentrations 
in GEOS-Chem with future emissions but fixed the meteorology as the 
future seasonal-mean O3 fields to predict future P values in the random 
forest algorithm. The GEOS-Chem simulations were also used because  the 
global transport chemistry model generally has more comprehensive chem-
ical mechanisms than most of the climate models (Lamarque et al., 2013). 
Although the climate conditions were fixed in 2015, the GEOS-Chem model 
applying future anthropogenic emissions was still able to describe reasonable 
patterns of seasonal-mean O3 concentrations (Figure S8 in Supporting Infor-
mation S1) and further balance the bias in climate models.

3.4.  Predicted Future Co-Occurrences of O3-Polluted Days and 
Hot  Days

To better understand the predicted results from the random forest algorithm, 
we first compared two different emission scenarios (SSP 1-2.6 and SSP 
5-8.5). Since it is well known that SSP 1-2.6 and SSP 5-8.5 represent low and 

high levels of future greenhouse gas emissions, respectively (Meinshausen et al., 2020); here, we focus on the 
anthropogenic emissions of air pollutants (such as ammonia (NH3), NOx, VOCs, sulfur dioxide (SO2), and carbon 
monoxide (CO)). In the SSP 1-2.6 scenario, almost all air pollutants in China show marvelous emission reduc-
tions in the future, except for NH3 (Figure 3a). Especially, the two most important O3 precursors, NOx and VOCs, 
reduced from 31.8 Tg to 16.1 TgC in 2015 to 10.1 Tg and 2.4 TgC in 2050, respectively. Such drastic changes are 
mainly contributed by the reductions in eastern China (Figures S9 and S10 in Supporting Information S1), imply-
ing where the future O3 pollution would be significantly alleviated under the SSP 1–2.6 scenario. In comparison, 
although the emissions of SO2 and CO in the SSP 5–8.5 scenario also show a significant reduction from 2015 to 
2050, other species, including NOx and VOC, change within a much smaller magnitude compared to SSP 1-2.6 
over China (Figure 3b). Furthermore, the emissions of O3 precursors in eastern China remain at a high level in the 
future (Figures S9 and S10 in Supporting Information S1).

We applied the random forest algorithm (Section 3.2) with S derived from the GEOS-Chem simulation (described 
in Section 2.4), seasonal-mean Tmax and O3 concentrations from CMIP6 models (Section 3.3.2) and the LAI 
in 2015 to examine future P values under SSP1-2.6 and SSP 5–8.5 scenarios. Future S value, seasonal-mean O3 
concentrations, and Tmax are shown in Figures S11–S13 in Supporting Information S1. The LAI values from 
MERRA2 were fixed in 2015 since the carbon cycles in most of the CMIP6 models remained large uncertainties 
(Arora et al., 2020). Figure 4 shows that the nationally averaged P values decreased to 29.9% in the 2050s follow-
ing the SSP 1-2.6 scenario. The risk of the co-occurrences of O3-polluted days and hot days was at a low level in 
most regions over China although the P values in North China remained at 48.7% in the 2050s. However, the P 
values under the SSP 5-8.5 scenario were predicted to remain high during the 2030–2050s with values ranging 
from 37.3% to 37.7% nationwide and 70.1%–70.5% averaged over North China. North Xinjiang Province, central 
eastern China, and northeast China all presented a high composited risk of O3 exceedance during hot days.

Figure S13 in Supporting Information S1 shows the future number of hot days averaged from the 5 selected 
CMIP models under different scenarios. Following both SSP 1-2.6 and SSP 5–8.5 scenarios, the frequencies 
of hot days were highest in Northwest China from May to October. Since the strict reductions in anthropogenic 
carbon emissions (SSP 1-2.6) still failed to stop climate warming (Figure S14 in Supporting Information S1), 
the frequencies of hot days showed a slightly increasing trend over central eastern China from the 2030–2050s. 
SSP 5-8.5 witnessed a more rapid increase in the frequency of hot days compared to SSP 1-2.6. In particular, the 
number of hot days in North China increased from 12.1 days in the 2030s to 15.3 days in the 2050s, implying a 
higher risk of the co-occurrence of O3-polluted days and hot days.

By multiplying the P values in Figure 4 and the number of hot days in Figure S13 in Supporting Information S1, 
we were able to predict the future frequencies of the co-occurrences of O3-polluted days and hot days (Figure 5). 
Under the SSP 1-2.6 scenario, the composited risk of O3 pollution during hot days significantly decreased, 
especially in North China, where the co-occurrence of O3-polluted days and hot days decreased from 7.6 days 

Figure 3.  Future changes in annual anthropogenic emissions of different air 
pollutants, including black carbon, organic carbon, nitrogen oxide, volatile 
organic compounds, ammonia, carbon monoxide, and sulfur dioxide, under the 
(a) Shared Socioeconomic Pathway (SSP) 1-2.6 and (b) SSP 5-8.5 scenarios 
over China in the years of 2015, 2030, 2040, and 2050, respectively.
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in the 2030s to 4.9 days in the 2050s. However, SSP 5-8.5 predicted a worse future in which the co-occurrences 
of O3-polluted days and hot days increased in North China from the 2030–2050s. These results implied large 
benefits in alleviating the composite risk of extreme weather events and severe air-polluted days through anthro-
pogenic emission reductions.

Figure 4.  Spatial patterns of future P values predicted by the random forest algorithm under the Shared Socioeconomic Pathway (SSP) 1-2.6 and SSP 5-8.5 scenarios 
in the 2030, 2040, and 2050s. Numbers labeled “CH” and “NC” represent values averaged over China and North China, respectively.

Figure 5.  Spatial patterns of co-occurrences of O3-polluted days and hot days under the Shared Socioeconomic Pathway 
(SSP) 1-2.6 and SSP 5-8.5 scenarios in the 2030, 2040, and 2050s. Numbers labeled “CH” and “NC” represent days averaged 
over China and North China, respectively.



Earth’s Future

GONG ET AL.

10.1029/2022EF002671

10 of 13

3.5.  Comparison Between the Chemistry Climate Model Predictions and the Random Forest Algorithm

We compared our predicted future co-occurrences of hot days and O3-polluted days with the chemistry-climate 
model results from the UKESM1-0-LL, which to our knowledge was the only one model in CMIP6 that provide 
future daily temperature and hourly O3 concentration data under both SSP 1-2.6 and SSP 5–8.5 scenarios. Note 
that the UKESM1-0-LL results here were with the “r1i1p1f2” variant so they were not included in our random 
forest algorithm (see the CMIP6 model description in Section 2.5).

To begin with, we evaluated the UKESM1-0-LL model performance by comparing the observed and simulated 
seasonal-mean Tmax and MDA8 O3 concentrations over May–October in 2015 (Figure S15 in Supporting Infor-
mation S1). The site-level observations and the origin model outputs with a resolution of 1.25° latitude × 1.875° 
longitude were both interpolated into 2° latitude × 2.5° longitude. Although the UKESM1-0-LL model-simulated 
reasonable patterns of seasonal-mean Tmax, the O3 concentrations were strongly overestimated (normalized 
mean bias exceeding 50% over China), which would definitely bring in large uncertainties in future prediction. As 
a result, we revised the future simulated daily Tmax and MDA8 O3 concentrations by applying the linear regres-
sion relationships (Figures S15d and S15h in Supporting Information S1) between observations and simulations 
in 2015 under different SSP scenarios, and then obtained the UKESM1-0-LL-predicted future co-occurrences of 
hot days and O3-polluted days over China.

The UKESM1-0-LL predictions (after revision) in the 2050s showed high risks of co-occurrences of hot days 
and O3-polluted days not only in North China but also in northwest China (Figure S16 in Supporting Infor-
mation S1), especially under the SSP 5–8.5 scenario, which was similar to our results from the random forest 
algorithm (Figure  5). Furthermore, the UKESM1-0-LL model-predicted national averaged days of co-occur-
rences decreased from 3.8 days in 2030s to 1.9 days 2050s under the SSP 1-2.6 scenario, but increased from 
6.9 days in the 2030s to 13.7 days in the 2050s under the SSP 5-8.5 scenario. Although the specific numbers 
were different from our predictions (Figure 5), which might led by the underestimates of P values in the random 
forest algorithm, especially in North China or the overestimates in O3 concentrations in UKESM1-0-LL, the 
UKESM1-0-LL model generally predicted similar future spatiotemporal variations of co-occurrences of hot days 
and O3-polluted days as our results, suggesting that our random forest algorithm was capable to achieve the 
prediction within the reasonable bias.

4.  Conclusions and Discussions
In summary, we predicted the future climate penalty on O3 pollution from the perspective of extreme cases, 
which, to our knowledge, has rarely been examined. Since multimodel simulations of future daily O3 concen-
trations were unavailable, we aimed to derive the climatological risk factor P, which was the probability of O3 
exceedance during hot days, through a random forest algorithm and further predicted the future co-occurrence 
of O3-polluted days and hot days. Evaluations showed that the random forest algorithm was capable to derive a 
reasonable pattern of P values with a mean bias lower than 10% in most regions over China despite the under-
estimates in North China. By combining GEOS-Chem simulations and CMIP6 multimodel outputs, our results 
showed that both the SSP 1-2.6 and SSP 5-8.5 scenarios increased the future hot days nationwide. The SSP 1–2.6 
scenario significantly reduced the composite risks of O3 exceedance during hot days with P values reduced from 
64.7% in the 2030s to 48.7% in the 2050s due to the strict reductions in anthropogenic emissions. However, the 
P values remained high under the SSP 5-8.5 scenario in eastern China, thus leading to increases in the co-occur-
rences of O3-polluted days and hot days until the 2050s.

Uncertainties in the predicted co-occurrences of O3-polluted days and hot days may be caused by three factors: 
algorithm uncertainties, model data uncertainties, and exclusion of variations in terrestrial vegetation. First, the 
random forest algorithm showed insufficient ability to predict extremely high P values (Figure 2). Even though 
we have tried almost all related parameters as predictors in EX8 (Table 1), such underestimates remained. As a 
result, the predicted P values under the SSP 5-8.5 scenario shown in Figure 4 might be underestimated, further 
underestimating the future co-occurrence of O3-polluted days and hot days. Second, although we applied the 
ensemble mean from the multimodel outputs to avoid the problem of model dependence, uncertainties could 
still be induced by large discrepancies in variables among different CMIP6 models, especially for the prediction 
of future hot days (Figure S17 in Supporting Information S1). Meanwhile, all 5 selected climate models over-
estimated the number of hot days in northwest China (Figure S7 in Supporting Information S1), which might 
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exaggerate the co-occurrence days in Xinjiang Province as shown in Figure 5. Furthermore, the variations in 
terrestrial vegetation could influence O3 concentrations through BVOCs emissions and stomatal dry depositions 
on decadal time scales (Lin et al., 2020; Wang et al., 2020), which were not considered in this study because most 
of the CMIP6 models lacked a dynamic vegetation module (Arora et al., 2020); thus, large uncertainties remained 
in predicting future vegetation.

Our approach applied the O3-Tmax sensitivity rather than the direct NOx and VOCs emissions (Table 1) because 
it seems difficult for the random forest to well represent the complex nonlinear chemical reactions with only 
emission inputs (Keller & Evans, 2019). We tried to replace the S value with the NOx and VOCs emissions in 
EX5 but found out random forest score of 0.64 and an RMSE value of 17.2% between observed and random-for-
est-predicted P values over China (not shown in Table 1), indicating a poorer performance compared to the origin 
EX5 configuration. Nevertheless, using the GEOS-Chem model to describe future S values still brought in new 
uncertainties considering the model bias (Figure S4 in Supporting Information S1) and fixed meteorological 
fields. A dilemma was confronted that either suffering the low performance of random forest with exact emis-
sions or admitting the simulated bias in a global transport chemistry model. However, it should be clarified that 
despite the direct NOx and VOCs emissions were omitted (Table 1), future changes in anthropogenic emissions 
under different SSP scenarios were comprehensively considered in our approach through the GEOS-Chem-sim-
ulated S values.

Despite the uncertainties, we established an effective machine learning method to predict the composite risks of 
the co-occurrences of extreme weather events and air-polluted days by considering future changes in both anthro-
pogenic emissions and climate. The algorithm avoided the model dependence problem by taking full advantage of 
the CMIP6 multimodel outputs. Our results highlight that the reductions in anthropogenic emissions can signifi-
cantly alleviate O3 pollution during hot days with the implications of benefits of reducing the related health risks.

Data Availability Statement
Observed ozone (O3) concentrations are obtained from the China Ministry of Ecology and Environment (http://
www.cnemc.cn). Ground-level-observed meteorological parameters are obtained from ground-level weather 
monitoring stations maintained by the China Meteorological Administration (http://data.cma.cn/). The CMIP6 
model outputs are downloaded from https://esgf-node.llnl.gov/projects/cmip6/. GEOS-Chem-simulated O3 data 
can be assessed from https://zenodo.org/record/6504889#.YmvZZJPP2rM.
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