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Abstract The overestimation of surface ozone concentration in low‐resolution global atmospheric chemistry
and climatemodels has been a long‐standing issue.We first update the ozone dry deposition scheme in both high‐
(0.25°) and low‐resolution (1°) Community Earth SystemModel (CESM) version 1.3 runs, by adding the effects
of leaf area index and correcting the sunlit and shaded fractions of stomatal resistances. With this update, 5‐year‐
long summer simulations (2015–2019) using the low‐resolution CESM still exhibit substantial ozone
overestimation (by 6.0–16.2 ppbv) over theU.S., Europe, eastern China, and ozone pollution hotspots. The ozone
dry deposition scheme is further improved by adjusting the leaf cuticle conductance, reducing the mean ozone
bias by 19%, and increasing the model resolution further reduces the ozone overestimation by 43%.We elucidate
themechanism bywhichmodel grid spacing influences simulated ozone, revealing distinctive pathways in urban
versus rural areas. In rural areas, grid spacing mainly affects daytime ozone levels, where additional NOx
emissions from nearby urban areas result in an ozone boost and overestimation in low‐resolution simulations. In
contrast, over urban areas, daytime ozone overestimation follows a similar mechanism due to the influence of
volatile organic compounds from surrounding rural areas. However, nighttime ozone overestimation is closely
linked to weakened NO titration owing to the redistribution of urban NOx to rural areas. Additionally,
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stratosphere‐troposphere exchange may also contribute to reducing ozone bias in high‐resolution simulations,
warranting further investigation. This optimized high‐resolution CESM may enhance understanding of ozone
formation mechanisms, sources, and changes in a warming climate.

Plain Language Summary Traditionally, low‐resolution Earth system models have persistently
overestimated surface ozone concentrations. Building on our previous optimization of the high‐resolution
Community Earth System Model version 1.3 for the Sunway heterogeneous‐architecture high‐performance
computing system, we have enhanced both the efficiency and accuracy of high‐resolution Earth system
simulations with interactive atmospheric chemistry. This advancement enables a systematic evaluation of the
benefits of high‐resolution (∼25 km atm) modeling compared to its low‐resolution (∼100 km atm) counterpart.
Our findings show that while improving ozone sinks, such as ozone dry deposition velocity, can partially reduce
bias in low‐resolution simulations, increasing model resolution significantly mitigates ozone overestimation.
Furthermore, we identify a key mechanism driving simulated ozone differences across grid spacings: the
misrepresentation of urban and rural emission redistribution in low‐resolution models alters the dominant ozone
formation regimes controlled by volatile organic compounds and nitrogen oxides, leading to ozone biases. This
newly optimized high‐resolution CESM is expected to improve our understanding of ozone formation
mechanisms, emission sources, and future changes in a warming climate.

1. Introduction
Climate and air quality interact strongly through multiple pathways (Fiore et al., 2015; Fu & Tian, 2019). Climate
affects air quality by modulating photochemical reaction rates (Jacob &Winner, 2009), precursor emissions such
as biogenic sources (Zhang et al., 2018), and sinks like water vapor, which facilitates ozone removal in remote
areas (von Schneidemesser et al., 2015). Conversely, air pollutants exert substantial effects on climate. For
example, solar ultraviolet radiation can be absorbed by gases, such as ozone, and be influenced by aerosols
through direct radiative effects (Madronich, 1993; Thorsen et al., 2020). Aerosols can further act as cloud
condensation nuclei and modify the properties of clouds (Huang et al., 2006; Quaas et al., 2009). Earth system
models are key tools to understand these complex interactions, and increasing their spatial resolution is an
important direction for enhancing such models, along with model process development and computational
advancement (Stevens et al., 2023).

While the grid spacings of models that participated in the first phase of the Coupled Model Intercomparison
Project ranged from 5.6° to 2.8° (Lambert & Boer, 2001), the resolutions of models that participated in CMIP5
and CMIP6 have increased notably to approximately 1°–3° (Ahmed et al., 2019). However, such resolutions
remain too coarse to resolve heterogeneities in orography, emissions, land cover, and atmospheric processes,
which together strongly affect chemical processes such as ozone formation regimes (Young et al., 2018).

Multi‐model intercomparison projects aiming to address the interactions between chemistry and climate began
with theAtmospheric Chemistry and ClimateModel Intercomparison Project (ACCMIP; (Lamarque et al., 2013)),
followed by the Chemistry–Climate Model Initiative (CCMI; (Morgenstern et al., 2017)) and the Aerosol
Chemistry Model Intercomparison Project (AerChemMIP; (Collins et al., 2017)) endorsed by the CMIP6. As part
of CMIP6, the High Resolution Model Intercomparison Project (HighResMIP) was established to pursue high‐
resolution simulations, though its primary focus remains on climate rather than atmospheric chemistry. The
slow progress of high‐resolution Earth system modeling in tackling chemistry‒climate interactions is partly
attributable to the much more intensive computational resources required to represent interactive atmospheric
chemistry. Considering the importance of chemistry‒climate interactions in affecting air quality, which has a
strong impact on human health (Lelieveld et al., 2015) and climate processes such as the hydrological cycle
(Ramanathan et al., 2001), it is imperative to develop high‐resolution Earth systemmodels suitable for delineating
the complex processes involved in these interactions, and further enhance the understanding of how these processes
may respond to a warming climate. While the scientific questions to be addressed in climate and air quality in-
teractions are multi‐faceted, we primarily focus on the gas phase air pollutant ozone in this study.

Ozone concentrations are closely associated with both precursor emissions and meteorological conditions (Wang
et al., 2017). Precursors originate from both anthropogenic and natural sources. The large spatial heterogeneity of
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anthropogenic emissions (Gao et al., 2022b; Zheng et al., 2021) can strongly affect the spatial distribution of
ozone concentration (Forkel & Knoche, 2007; Markakis et al., 2014). Therefore, numerical simulations with
coarse resolution cannot accurately resolve the spatial variability of ozone precursor emissions, which is one of
the factors yielding large biases in ozone simulations and leading to the long‐standing issue of ozone over-
estimation highlighted in the most recent Intergovernmental Panel on Climate Change assessment report (Liao
et al., 2021; Szopa et al., 2021). For example, on the basis of the low‐resolution (1.9° × 2.5°) Community Earth
System Model (CESM), the simulated maximum daily 8‐hr average (MDA8) ozone concentrations, averaged in
summer during the period 2001–2010 over the rural areas of Europe and the eastern U.S., are substantially
overestimated (by >20 ppbv) at a number of observational sites (see Figure 8 in (Lamarque et al., 2012)). The
overestimation of ozone in rural areas exhibited in the CESM is also commonly seen in other global models (Wild
& Prather, 2006), and even in regional models at relatively low‐resolution of ∼0.5° (Li et al., 2019). For example,
several studies based on five to seven CMIP6 models, including those in AerChemMIP, consistently show
positive ozone biases year‐round, in both rural areas over the land and oceanic regions, with monthly mean biases
as high as 20 ppbv (Turnock et al., 2020; Zanis et al., 2022). In particular, the overestimation across the entire year
over oceanic regions indicates that the ozone deposition velocity is likely too low, given the weak photochemistry
in these environments (Clifton, Fiore, et al., 2020).

It has been suggested that the ozone bias can be caused by incorrect emission data and the incapability of low‐
resolution models to separate emissions between urban and rural areas (Lamarque et al., 2012; Shao
et al., 2022). Specifically, NOx emissions over rural areas are typically lower than those over urban areas with an
opposite behavior for biogenically emitted organic compounds, and models with grid spacings of 1° or coarser
will artificially distribute these emissions between the two areas. This may amplify NOx emissions over rural
areas, where ozone production efficiency tends to be higher than that in urban areas. In particular, over rural
regions rich in isoprene, triggering a larger ozone increase compared with an urban area for the same additional
amount of NOx emissions (Kleinman, 2000; Liu et al., 1987; Sillman et al., 1990b). Moreover, emission pro-
jections depicted by coarse‐scale grids may result in biases in future emissions; for example, the same emission
projection factor for both urban and rural areas within one grid could lead to policy misclassification because the
policies for urban and rural areas may be quite different (Lauwaet et al., 2014; Markakis et al., 2014, 2016).

The effect of accurately calculating ozone dry deposition has been considered as another important factor
affecting ozone simulations, and this is subject to large uncertainties. The ozone dry deposition flux is determined
by the dry deposition velocity and ozone concentration. Following the “resistance approach” suggested by
Wesely (1989), ozone dry deposition velocity (Vd) is constrained by aerodynamic resistance (Ra), quasi‐laminar
sub‐layer resistance (Rb), and canopy resistance (Rc) (Fowler et al., 2001; Wesely & Hicks, 2000). In areas with
large amounts of vegetation, ozone dry deposition velocity is generally determined by canopy resistance or
conductance ( 1Rc). Underestimation of ozone dry deposition has been widely reported, leading to systematic
overestimation of ozone (Hardacre et al., 2015; Val Martin et al., 2014). All 13 global models, with online
calculation of dry deposition velocity, used in the Task Force on Hemispheric Transport of Air Pollution (HTAP)
intercomparison (Hardacre et al., 2015) applied versions of the Wesely dry deposition scheme (Wesely, 1989).
Their results showed substantial underestimation of ozone dry deposition in forest areas (see Figures 6 and 7 in
Hardacre et al., 2015), especially for regions with high observed values; monthly mean simulated values were
mostly below 0.4 cm s− 1, whereas the observed monthly mean ozone dry deposition velocities reached as high as
0.8–1.0 cm s− 1.

Using newly deployed heterogeneous Sunway supercomputers and the CESM, we have recently constructed a
series of high‐resolution simulations, referred to as SW‐HRESMs, with spatial resolutions of the atmospheric and
oceanic components ranging from∼0.25° to 0.05° and 0.1°–0.03°, respectively (Zhang et al., 2020a, 2023). These
high‐resolution simulations exhibit greatly improved capability to simulate atmospheric blocking (Gao
et al., 2025), downward solar radiation (Kou et al., 2023), sea surface temperature (Chang et al., 2020), and
associated extremes, such as marine (Guo et al., 2022) and atmospheric heatwaves (Gao et al., 2023), which are
closely associated with ozone formation through stimulating biogenic emissions and accelerating photochemistry
(Gao et al., 2020; Kou et al., 2025). Based on the high‐resolution ESM framework, this study conducts a
comprehensive evaluation of the added value of high‐resolution ESMs in simulating surface ozone concentra-
tions, as well as identifying remaining issues which call for coordinated efforts by the community.
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2. Methods
2.1. Model Setup and Evaluation of Meteorological Parameters

In this study, we used CESM1.3 with the same settings as several previous high‐resolution modeling studies
(Chang et al., 2020; Guo et al., 2022; Zhang et al., 2020a). Two spatial resolution configurations, a nominal 1° and
0.25°, were applied in Community Atmosphere Model 5.0 (CAM5) configured with the spectral element
dynamical core, with prescribed sea surface temperature and sea ice at spatial resolutions of 1.0° × 1.0°. The
parallelism optimization of the high‐resolution ESM on a heterogeneous architecture supercomputing system is
detailed in Section S1 in Supporting Information S1. The Model for OZone And Related chemical Tracers
(MOZART) was used as the gas phase chemistry mechanism, and the modal aerosol module with three lognormal
modes (MAM3) was used as the aerosol scheme (Liu et al., 2012). No nudging was used in the atmospheric
simulations in this study. Simulations were conducted over May, June, July, and August, representing summer in
the Northern Hemisphere, over the period 2015–2019, with the month of May as a spin‐up period. Prior to that, a
half‐year spin‐up is applied, primarily for tropospheric ozone, considering that tropospheric ozone initially starts
from zero. Stratospheric ozone is specified using climatological monthly averages at the upper boundary, derived
from the period 1996 to 2005, as simulated by the Whole Atmosphere Community Climate Model (WACCM)
during the evaluation of coupled chemistry‐climate models (WACCM Ref1.4 CCMVal2; (Morgenstern
et al., 2010)), with the zonal mean ozone distribution from ∼400 hPa to 0.1 hPa (Figure S2 in Supporting In-
formation S1). When examining stratospheric ozone variability, a linearized stratospheric ozone (Linoz; (Hsu &
Prather, 2009)) approach may be applied for modeling stratospheric ozone chemistry. This method is utilized in
models like the U.S. Department of Energy's (DOE) new Energy Exascale Earth SystemModel (E3SMv1; (Golaz
et al., 2019)), which necessitates a longer spin‐up period for accurate simulation.

The physics configuration in CAM5 selected in SW‐HRESM is based on the setup in a previous study (Meehl
et al., 2019). Model tuning was necessary for both low and high resolutions to achieve a top‐of‐atmosphere
radiation balance, as detailed in Section 2.2 of Chang et al. (2020). The physics time step is half an hour
(1,800 s) for the low‐resolution (1°) simulations and 900 s for the high‐resolution (0.25°) simulations. This setting
aligns with the recommendation in Caldwell et al. (2019), which indicates that high‐resolution simulations with
approximately 16 times more grid points than low‐resolution simulations generally require a time step that is two
times shorter. This configuration in CAM5 includes several updates, such as transitioning from the Eulerian to the
Lagrangian method for vertical advection, making minor adjustments to the microphysics and radiation schemes,
and updating the heterogeneous freezing code and gravity wave parameterization, compared to earlier versions
like CAM4. Meehl et al. (2019) demonstrated that these improvements in physics, whether at a 1° or 0.25°
resolution, can significantly reduce the bias (by approximately 15%–20%) related to weakened storm track
strength, as indicated by the maximum eddy kinetic energy at 850 hPa. Additionally, the study showed that with
the same CAM5 physics, the 0.25° resolution further reduces the bias by 20% compared to the 1° resolution. The
improvement in storm tracks is linked to an enhanced meridional SST gradient, driven by an increase in mid-
latitude low clouds, which decreases incoming solar radiation and thus reduces midlatitude SSTs.

After conducting multi‐century simulations using both high‐ and low‐resolution configurations (Zhang
et al., 2020a), Chang et al. (2020) performed the first comprehensive evaluation of mean climate and climate
extremes using this data set. Their findings indicated that high‐resolution simulations achieve improvements in
key metrics such as global mean 2‐m air temperature and sea‐surface temperature, and tropical cyclone repre-
sentation. Building on this work, we extended the analysis to focus on extreme weather events, including heat
waves (Gao et al., 2023), extreme integrated water vapor transport events (atmospheric rivers) and the associated
coastal extreme precipitation (Guo et al., 2024). These studies collectively demonstrate an improved capability of
high‐resolution simulations in reproducing climate extremes. Furthermore, we performed an uncentered spatial
root mean square error (RMSE) analysis for several variables, including downward surface solar radiation, 2‐m
air temperature, daily precipitation, total cloud cover, and zonal wind at 800 hPa and 200 hPa (Table S2 in
Supporting Information S1). The spatial distributions of total cloud cover and zonal wind are illustrated in Figure
S3 in Supporting Information S1. The results reveal that the high‐resolution model generally show lower RMSE
values across most variables, with the exception of 200 hPa zonal wind, which enhances confidence in the ac-
curacy of high‐resolution simulations.

The deep convection scheme may not scale effectively with the increase in grid spacing. To evaluate how finer
grid spacings may improve precipitation simulations, we analyze the large‐scale and convective precipitation
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(Figures S4 and S5 in Supporting Information S1). While the zonal mean distribution of total precipitation (the
sum of large‐scale and convective components) is comparable between the high‐resolution and low‐resolution
simulations, the high‐resolution run shows a noticeably larger fraction of large‐scale precipitation. This shift
aligns more closely with reanalysis data from ERA5, suggesting improved realism in the high‐resolution sim-
ulations. The increase in the large‐scale component of precipitation is likely related to enhanced upper‐level
condensational heating and reduced lower‐level evaporative cooling (Boyle & Klein, 2010), consistent with
findings from previous studies (Bacmeister et al., 2014; Terai et al., 2018; Xie et al., 2018). The changes in the
ratio of large‐scale to total precipitation appear to be more strongly influenced by the increase in horizontal
resolution, which enables the model to resolve a broader range of motion scales (Terai et al., 2018). Additionally,
a reduction in time step can diminish the influence of convection parameterization (Williamson, 2013). However,
the effect of time step may be marginal, considering that the time scales of deep and shallow convection are
approximately 1 hr and 30 min, respectively. Given that the low‐resolution simulations use a 30‐min time step—
comparable to these time scales—the effect of a smaller time step (15 min) in high‐resolution runs might be less
pronounced, as it falls below the time scales of both deep and shallow convection (Williamson, 2013).

2.2. Emissions

Anthropogenic emissions, including emissions from power plants, industry, residential, road and offroad trans-
portation, solvents, agriculture, and shipping were obtained from CAMS‐GLOB‐ANT v4.2‐R1.1 (https://per-
malink.aeris‐data.fr/CAMS‐GLOB‐ANT; (Granier et al., 2019)), herein referred to as CAMS. The CAMS
emissions are at a monthly scale with a spatial resolution of 0.1° × 0.1°, and emissions over China are updated
using the Multi‐resolution Emission Inventory for China (MEIC) (Li et al., 2017) to improve accuracy. The gas
phase emission mapping was similar to the method introduced in Schwantes et al. (2022), whereas the aerosol
emission mapping was based on Liu et al. (2012). The anthropogenic emission sectors of power plants and in-
dustry are vertically distributed to the altitude as high as 300 m based on Table 1 in Dentener et al. (2006).

Biomass burning emissions were provided by the Fire INventory from National Center for Atmospheric Research
(FINN; (Wiedinmyer & Emmons, 2022)), with a high spatial resolution of 0.1°. The recently released FINN
version 2.5 was used (https://rda.ucar.edu/datasets/ds312‐9; (Wiedinmyer et al., 2023)), which includes small‐
scale fire emission data based on active fire products from both the Moderate Resolution Imaging Spectroradi-
ometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS; Tang et al., 2022). The raw text files at
∼1 km were gridded into NetCDF format at 0.1°, and emissions of primary aerosols and their precursors were
distributed over a number of vertical layers according to the injection heights as in Dentener et al. (2006), similar
to the methodology applied in our previous studies (Chen et al., 2023; Guan et al., 2020). VIIRS enhances the
capability of detecting small fires (Chen et al., 2023; Wiedinmyer et al., 2011; Zhang et al., 2020b), which are
generally undetected by the MODIS product. Volcanic and marine emissions (mainly dimethyl sulfide) were
obtained from the Aerosol Inter Comparison Project (AeroCom; (Dentener et al., 2006)). Aircraft emissions were
derived from the Community Emissions Data System (Hoesly et al., 2018). Biogenic volatile organic compounds
were generated online by the Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1;
(Guenther et al., 2012)).

Table 1
Descriptions of Different Dry Deposition Cases

Parameters

Cases

Rs Rlu (wet condition) Rlu (dry condition) Model

LE20 Add LAI and modify Rs
based on Equation 1

CESM‐LR

LE20_Wet Add LAI and modify Rs
based on Equation 1

Modify Rlu initial condition and
modify Rlu based on Equation 2

CESM‐LR

LE20_WetDry Add LAI and modify Rs
based on Equation 1

Modify Rlu initial condition and
modify Rlu based on Equation 2

Modify Rlu initial condition,
normalized by relative humidity in the
exponent form based on Equation 2

CESM‐LR

LE20_Wet_SW‐HRESM Add LAI and modify Rs
based on Equation 1

Modify Rlu initial condition and modify
Rlu based on Equation 2

SW‐HRESM
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The emissions at 0.1° resolution were directly used in the high‐resolution simulations, whereas for the low‐
resolution simulations, the emissions were aggregated from 0.1° to ∼1.0° resolution. For the high‐resolution
run at 0.25°, linear interpolation is performed in the model from 0.1° to 0.25°. While this interpolation method
is not area‐conservative, it does not significantly affect the overall magnitude. Using NO emissions from
anthropogenic and biomass burning source as an example, the total global emissions based on 0.1° grid is 6.72 Tg
per month during the summer of 2015–2019, and linear interpolation to either ∼0.25° or ∼1.0° grids yielding a
difference within 1%.

2.3. Observational Data

Hourly ozone observational data for the U.S. were obtained from the Air Quality System (AQS, https://www.epa.
gov/aqs; last access: 30 June 2022) and the Clean Air Status and Trends Network (CASTNET, https://www.epa.
gov/castnet; last access: 30 April 2022). Observed hourly surface ozone concentrations in Europe and China were
obtained from the European Monitoring and Evaluation Program (EMEP) database (http://ebas.nilu.no; last
access: 30 January 2022) and the China National Environmental Monitoring Center (CNEMC; http://www.pm25.
in, last access: 23 May 2021), respectively. Ozone dry deposition fluxes were obtained from CASTNET (last
access: 30 April 2022). Additional surface ozone observations were sourced from the Tropospheric Ozone
Assessment Report (TOAR) database (Fleming et al., 2018; Mills et al., 2018). Ozone Profiles with ozonesondes
were obtained from the Global Monitoring Laboratory of National Oceanic and Atmospheric Administration
Earth System Research Laboratories (https://gml.noaa.gov/obop/mlo/programs/esrl/ozonesondes/ozonesondes.
html; last access: 30 January 2023). Note that the ozone observation data used in the main manuscript are from
AQS, CASTNET, EMEP and CNEMC, with the spatial distributions of sites shown in Figure S6 in Supporting
Information S1. The TOAR data set (site locations shown in Figure S7 in Supporting Information S1) includes the
number of stations in urban, suburban, and rural areas, as shown in Table S3 in Supporting Information S1. Ozone
vertical profiles are used in the supplementary information.

3. Results
3.1. Evaluation of Ozone Dry Deposition Velocity and Ozone Diurnal Cycle

Using the CESM at grid spacings of 1.9° × 2.5°, simulated MDA8 ozone concentrations, averaged over rural
areas of Europe and the eastern U.S. during summer in the period 2001–2010, exhibited a pronounced over-
estimation, reaching>20 ppbv at a number of locations (Lamarque et al., 2012). In a subsequent study, Val Martin
et al. (2014) determined that this overestimation was largely due to a substantial underestimation (by approxi-
mately 50%) of daily stomatal conductance, based on observed ozone dry deposition velocity. This underesti-
mation led to a lower ozone dry deposition velocity and a systematic ozone overestimation, yielding a weighted
summer ozone bias of 44% in the eastern U.S. They hypothesized that the Wesley scheme used in the CESM is
overly simplistic, as it represents stomatal conductance—defined as the inverse of stomatal resistance (Rs)—as a
function of only downward surface solar radiation and near surface air temperature, while neglecting the effects of
canopy depth and leaf area index (Baldocchi et al., 1987; Fowler et al., 2009; Gao &Wesely, 1995). By adopting
the Ball‒Berry scheme (Collatz et al., 1991, 1992; Sellers et al., 1996), which relates stomatal resistance directly
to the net leaf photosynthesis and integrates stomatal resistance based on the leaf area index over the canopy depth
for sunlit and shaded leaves, Val Martin et al. (2014) showed that the underestimation of ozone dry deposition
velocity could be slightly reduced, but the rate still remained too low. To further address this issue, they artificially
increased the stomatal conductance by a factor of five, which evidently increased the ozone dry deposition ve-
locity, thereby lowering ozone concentrations and reducing ozone overestimation. Nevertheless, this adjustment
was based on an empirical scaling factor with large uncertainties, reflecting the complexities of the processes
controlling ozone concentrations.

More recently, Emmons et al. (2020), referred to herein as LE20, pointed out an error in Val Martin et al. (2014)
related to the summation of sunlit and shaded fractions of the stomatal resistances, noting that the sum should be
performed in parallel (Equation 1) instead of in series. However, even after this error correction, the simulated
ozone concentrations in LE20 remain overestimated (by an average of 13 ppbv in summer in the southeastern U.
S.), and the lack of evaluation of the ozone dry deposition velocity makes it difficult to judge the effectiveness of
the revised formula.
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1
RS
= fsun × LAI × (

1
rsuns

) + (1 − fsun) × LAI × (
1
rshas
) (1)

where, fsun and 1− fsun represent the fractions of sunlit and shaded leaves, respectively, and rsuns and rshas indicate
the stomatal resistance for the sunlit and shaded leaves, respectively.

For a systematic evaluation of ozone dry deposition velocities, the simulations in this study do not apply
meteorological nudging, which are not amenable to a day‐to‐day comparison. Therefore, we compared the diurnal
cycle of ozone dry deposition velocity over the U.S. during the summer simulation period of 2015–2019 with
observations from CASTNET (shown in black in Figure 1). The dry deposition velocity in CASTNET is not
directly measured, but is instead calculated using modeled dry deposition velocities from the Multilayer Model
(Finkelstein et al., 2000; Meyers et al., 1998) and measured atmospheric concentrations (Schwede et al., 2011).
We first applied the same dry deposition scheme and settings as those used in LE20 for the low‐resolution
simulations based on CESM‐LR, with the diurnal cycle of simulated ozone dry deposition velocity shown in
orange in Figure 1. In addition to stomatal conductance, leaf cuticle conductance ( 1Rlu) in Equation 2 plays an
important role in ozone dry deposition. In particular, the leaf cuticle conductance is closely associated with at-
mospheric humidity; for example, high humidity under dew point and rainfall, defined as daily precipitation
<1 mm, could greatly enhance O3 uptake by leaf cuticles (Padro, 1996; Zhang et al., 2002, 2003). The initial
condition of leaf cuticle resistance (Rlu0) during wet conditions in LE20 based on the Wesley scheme is
considered too high, and smaller values have been suggested in Zhang et al. (2003); these were applied in this
study to adjust the initial leaf cuticle resistance and the corresponding CESM‐LR simulation scenario is referred
to as LE20_Wet. The corresponding simulated ozone dry deposition velocity is shown in red in Figure 1.
Meanwhile, for other days under dry conditions without dew or rainfall, the initial condition was adjusted to take
the smaller value listed in Zhang et al. (2003), relative to the default value in CESM, and a normalization of

Figure 1. Box‐and‐whisker plot of the diurnal cycle (local standard time) of ozone dry deposition velocity. Shown are results
in the U.S. for observations from CASTNET(black) and simulations based on the CESM‐LR (orange, red, blue) from three
scenarios as well as SW‐HRESM based on LE20_Wet (green) described in Section 3.1 of the main text, with the 25th and
75th percentiles (boxes, and differences between 75th and 25th percentiles considered as interquartile ranges), medians
(horizontal lines), averages (solid points), and line end points indicating values 1.5 times the interquartile range above the
upper quartile and below the lower quartile. All other values are considered outliers and marked by hollow circles. For those
without outliers, a triangle is added over the line end point. Note that all box‐and‐whisker plots in subsequent figures are
drawn based on the same method. The simulation period covers the summers of 2015–2019, whereas 10 years of summers
(2006–2015) from CASTNET are applied considering that CASTNET data are available prior to 2015. A multi‐year average
on each day was taken prior to drawing the plot; hence, the spread in the box‐and‐whisker plot indicates daily and spatial
variabilities.
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relative humidity in the exponent form was applied; the corresponding CESM‐LR simulation scenario is referred
to as LE20_WetDry. Information on these three cases is summarized in Table 1.

Rlu =
Rlu0
LAI

+ RT, (2)

where, Rlu is the leaf cuticle resistance, Rlu0 is the initial leaf cuticle resistance, LAI is the leaf area index, and RT
is a function of the 2‐m air temperature, defined as 1,000 × exp (− T − 4), with T in units of Celsius.

As shown in Figure 1, the mean daytime (i.e., 9:00‒15:00) ozone dry deposition velocity in the U.S. was
0.46 cm s− 1 according to CASTNET, and 0.43, 0.56, and 1.04 cm s− 1 for the three CESM‐LR simulation sce-
narios: LE20, LE20_Wet, and LE20_WetDry. The ozone dry deposition velocity in LE20 was lower than that of
CASTNET, whereas the other two scenarios gave higher values. The CASTNET ozone dry deposition velocity is
based on a multi‐layer model used in Meyers et al. (1998). Wu et al. (2018) compared five dry deposition schemes
for calculating ozone dry deposition velocity over a temperate mixed forest in southern Ontario, Canada, using a
5‐year observed flux database during the periodMay 2008 to April 2013 for evaluation. They found that the ozone
dry deposition velocity based on the multi‐layer model was, in general, a factor of one to two smaller than that of
the other four schemes, and only one‐third to half of the observed values (hourly values ranging from 0.3 to
1.0 cm s− 1). Similarly, Finkelstein et al. (2000) showed that the mean daytime ozone deposition velocity was
0.75 cm s− 1 at a deciduous forest site (41.60°N, 78.77°W) in northwestern Pennsylvania, U.S. from April to
October 1997.

A number of observations from literature is summarized in Clifton, Fiore, et al. (2020), and we select one
reference (Li et al., 2018) within the simulation period of this study for comparison. They did field measurements
at Ramat Hanadiv Nature Park near the Eastern Mediterranean coast during the summers of 2015 and 2016,
showing ozone dry deposition of 0.39 cm s− 1and 0.31 cm s− 1 on average during daytime and nighttime,
respectively. The corresponding values based on LE20_wet is 0.28 cm s− 1 and 0.18 cm s− 1 in CESM‐LR,
indicating comparable results with observations but may underestimate ozone dry deposition. If LE20_WetDry is
applied, the mean value at the grid of Ramat Hanadiv Nature Park is 0.52 cm s− 1, which is apparently too high.
The overestimation of ozone dry deposition velocity in the method of LE20_WetDry is partly due to the lack of
consideration of friction velocity. The friction velocity could be another important factor affecting the daily
variability of ozone dry deposition velocity (El‐Madany et al., 2017; Fares et al., 2014); in particular, the
nighttime friction velocity may be much smaller than one (Zhang et al., 2003), so a normalization by friction
velocity could be applied to increase the stomatal resistance and reduce the deposition velocity.

The simulated mean ozone concentrations using CESM‐LR based on the three aforementioned deposition
schemes over the U.S., southeastern U.S. (SEUS), Europe, and eastern China are shown in Figure 2. Based on
LE20, the simulations successfully captured the diurnal cycles of ozone, but with ozone concentrations that were
too high. Over the U.S., adjusting the leaf cuticle resistance during wet days (LE20_WET), mean ozone con-
centrations were slightly reduced (by 6%; 2.7 ppbv). Further adjusting the leaf cuticle resistance during dry days
substantially reduced the ozone concentrations (by 6.7 ppbv), giving a mean value of 37.9 ppbv, which is much
closer to the observations (32.5 ppbv). However, as illustrated in Figure 1, the ozone dry deposition in
LE20_WetDry may be too high; hence, in the analysis below, LE20_Wet is selected as the optimal scheme for
both low‐resolution and high‐resolution ESM simulations. For comparison, the ozone dry deposition based on the
LE20_Wet method from the high‐resolution model (SW‐HRESM) is shown in Figure 1 (green), which is
comparable to the daily mean dry deposition from the low‐resolution CESM‐LR LE20_Wet method, both being
0.35. It must be noted that the ozone dry deposition scheme needs to be further improved and validated in future
studies. The importance of ozone dry deposition on ozone concentration simulations can be inferred based on the
following phenomenon. A previous assessment of Geophysical Fluid Dynamics Laboratory model shows it
relatively well captures monthly variations of ozone dry deposition (Clifton, Paulot, et al., 2020), and this model
corresponds to be one of the models with smallest ozone overestimate (Figure 4 in (Turnock et al., 2020)).

3.2. Evaluation of Ozone Concentrations Based on High‐ and Low‐Resolution ESMs

After the evaluation of ozone dry deposition schemes, simulations were conducted during the summers of 2015–
2019 using LE20_Wet at both high‐resolution (SW‐HRESM) and low‐resolution (CESM‐LR). The spatial
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distributions of surface MDA8 ozone concentrations over land areas in the Northern Hemisphere are displayed in
Figure 3, with observations mainly covering the U.S., Europe, and China. The mean MDA8 ozone concentrations
calculated over the observed grids were 44.4, 51.4, and 53.1 ppbv, based on observations, SW‐HRESM, and
CESM‐LR, respectively. The observations showed hot spots over the western and southeastern U.S., northern
China (including Beijing‒Tianjin‒Hebei (BTH) and the junction of Jiangsu, Anhui, Shandong, and Henan
(referred to as SWLY)), mid‐China (including the Yangtze River Delta (YRD)), and southern China (including
the Pearl River Delta (PRD)). The high‐resolution simulations (SW‐HRESM) captured these hot spots relatively
well, whereas the low‐resolution simulations (CESM‐LR) exhibited much weaker spatial heterogeneities and
tended to show surface ozone concentrations that were too high. Further evaluation of the vertical profile of ozone
from surface to ∼20 km is conducted at eight sites (Figure S8 in Supporting Information S1), showing that both
models in general capture well the vertical distribution of ozone, and for majority of sites, slightly lower mean
bias from surface to 20 km is achieved in SW‐HRESM compared to CESM‐LR.

Additionally, an ozone budget analysis for tropospheric ozone, defined as ozone concentrations less than or equal
to 150 ppbv (Prather et al., 2011; Young et al., 2013), is carried out (Table 2), revealing comparable ozone burden,
ozone production, loss, dry deposition and stratosphere‐troposphere exchange (STE) between SW‐HRESM and
CESM‐LR. The budget is generally comparable to previous studies (e.g., Table 9 in (Lamarque et al., 2012)).
Note that both STE and deposition play equally important roles in altering the summertime tropospheric ozone
budget across the high‐ and low‐resolution model simulations (Table 2). Given that it takes several weeks for
ozone from STE to reach the surface from the upper troposphere, and considering that STE ozone flux peaks in
late spring (e.g., Figure 7 of Hsu & Prather, 2009), STE might play an important role in influencing surface ozone
levels during the summer months. The impact of STE on surface ozone in the high‐resolution model still requires
further investigation in future studies. Lightning flash rates and intensity are influenced by cloud top height (Price
et al., 1997; Price & Rind, 1992), with additional details provided in Emmons et al. (2010). In summer, the
magnitude of lightning‐induced NOx is 1.0 Tg N in the high‐resolution simulation and 1.4 Tg N in the low‐

Figure 2. Box‐and‐whisker plots of regional mean diurnal cycles (local standard time) of ozone concentrations. Shown are results over the U.S. (a), Southeastern U.S.
(SEUS; b), Europe (c) and Eastern China (d) during the summers of 2015–2019, with black lines and text representing observed values (observations sites shown in
Figure S6 in Supporting Information S1), and colored lines and text indicating simulated results based on different ozone dry deposition schemes (LE20, LE20_Wet, and
LE20_WetDry) using the CESM‐LR.
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Figure 3. Spatial distributions of MDA8 ozone concentrations during the summers of 2015‒2019. Shown are results based on (a) Observations, (b) SW‐HRESM and (c)
CESM‐LR. The black squares show the areas of Europe, southeastern U.S. and four regions in China; from north to south, these are Beijing‒Tianjin‒Hebei, the junction
of Jiangsu, Anhui, Shandong, and Henan, the Yangtze River Delta, and the Pearl River Delta. The mean MDA8 ozone value over the observational grids is shown in the
top left of each panel. All simulations are presented at 1°.
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resolution simulation (Table 2). As resolution increases, convective activity diminishes, as evidenced by reduced
convective precipitation (Figures S4 and S5 in Supporting Information S1), leading to a reduction in lightning‐
produced NOx compared to low‐resolution simulations. When scaling summer lightning NO to an annual basis,
these estimates likely align with current literature values (3–7 Tg N/year; (Khodayari et al., 2018)). Further
evaluation of lightning NO is crucial to reduce uncertainties in its magnitude and its impact on ozone production.

To further evaluate ozone concentrations over major ozone pollution regions, including the U.S., Europe, and
eastern China, as well as specific regions of the SEUS and metropolitan areas in China such as BTH, YRD,
SWLY, and PRD, box‐and‐whisker plots of MDA8 ozone were constructed (Figure 4). Besides the observations,
three simulation scenarios are displayed in Figure 4; these include two sets of low‐resolution simulations with
different ozone dry deposition schemes (the abovementioned LE20 and LE20_Wet schemes) referred to as
CESM‐LE20 and CESM‐LR, respectively, and a high‐resolution simulation with the LE20_Wet scheme (SW‐
HRESM). The CESM‐LE20 is considered the base simulation. NO emissions from anthropogenic and biomass
burning source over the eight areas at 0.1°, 0.25° and 1° are shown in Table S4 in Supporting Information S1.
When comparing emission magnitude, the difference between 0.1° and 0.25° resolutions is minimal, and the
comparison between 1° and 0.25° resolutions is also similar at the national level. However, at the regional level,
the results for the lower resolution tend to be slightly higher, possibly due to edge effects in emission‐dense areas,

Table 2
Tropospheric (Ozone <150 ppbv) Ozone Budget in Summer 2015

Name (units)

Models

Burden Tg
Production Tg
summer− 1

Loss Tg
summer− 1

Net chem.
Tg summer− 1

Deposition Tg
summer− 1

STE Tg
summer− 1

Lightning NO
TgN summer− 1

SW‐HRESM 294 1,130 1,002 127 216 89 1.0

CESM‐LR 312 1,131 1,004 128 232 104 1.4

Figure 4. Box‐and‐whisker plots of MDA8 ozone during the summers of 2015‒2019. Shown are results in the U.S. (a), southeastern U.S. (SEUS; b), Europe (c), eastern
China (d), Beijing‒Tianjin‒Hebei (BTH; e), Jiangsu‒Anhui‒Shandong‒Henan (SWLY; f), Yangtze River Delta (YRD; g), and Pearl River Delta (PRD; h) regions for
observations (black) and simulations based on the SW‐HWESM (red), low‐resolution model with adjusted ozone dry deposition velocity of LE20_Wet (CESM‐LR;
blue), and LE20 ozone dry deposition scheme (CESM‐LE20; orange). All observations and model simulations were combined to 1° prior to the analysis to exclude any
influence solely caused by the grid spacing. The results of the student t‐test demonstrate that the biases in SW‐HRESM are significantly smaller, with all improvements
being statistically significant (p < 0.05).
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where the lower resolution grids may have captured some additional emissions from adjacent high‐emission
regions.

Some distinctive features emerge from the comparison. For all regions of interest, the low‐resolution base
simulations gave substantial overestimations, ranging from 6.0 to 16.2 ppbv, comparable to those reported
previously (Emmons et al., 2020; Lamarque et al., 2012), although emissions in these studies may differ from that
in this study. By adjusting the ozone dry deposition scheme to LE20_Wet, the simulated bias in the CESM‐LR
ranged from 4.7 to 10.8 ppbv, with a mean bias reduction of 19% (2.0 ppbv). By increasing the horizontal spatial
resolution (SW‐HRESM), the bias was further reduced by 43% (3.3 ppbv). Note that the mean bias in BTH is
rather small, which does not mean SW‐HRESM is perfect in simulating ozone concentrations. Instead, this re-
flects a five‐summer mean simulated results without nudging, indicating the improvement of ozone simulations
on the mean scale. One exception was found over Europe where the overestimation slightly increases in the SW‐
HRESM, which is consistent with a previous study (Fenech et al., 2018). A diagnostic analysis based on tem-
perature showed that the SW‐HRESM improved 2‐m air temperature distribution, particularly on the high
temperature flank over the right tail of temperature distributions, for most regions, except in Europe where there
was a higher positive temperature bias compared to CESM‐LR. This should be further investigated in future
studies; for example, by conducting decadal simulations for assessment and applying a nudging technique to
constrain the meteorology with observations. Another important feature is that the low‐resolution model tends to
underestimate the ozone peak, but overestimates low ozone values, whereas the SW‐HRESM demonstrates
enhanced capability for delineating both high and low peak ozone concentrations. By using another observational
data set of TOAR, simulated results from SW‐HRESM and CESM‐LR at both urban (Figure S9 in Supporting
Information S1), suburban and rural sites (Figure S10 in Supporting Information S1) show comparable con-
clusions to the discussions abovementioned.

Considering the new interim target 1 ozone standard of 160 μg m− 3 (∼80 ppbv) and target 2 ozone standard of
120 μg m− 3 (∼60 ppbv) released in the 2021 global air quality guidelines of the World Health Organization, as
well as the standard of 70 ppbv set by the U.S. Environmental Protection Agency on 1 October 2015, we evaluated
how the models behaved in terms of exceedance of these standards over metropolitan areas of China (e.g., BTH,
SWLY, YRD, and PRD). As shown in Figure 5, the high‐resolution model behaves much better in simulating the
ozone exceedance days compared with the low‐resolution simulations. Specifically, for the low‐resolution ESM,
the mean biases averaged over the ozone exceedance to the three standards of 60, 70, and 80 ppbv were 20%, 54%,
32%, and − 58% over BTH, SWLY, YRD, and PRD, respectively, and the biases were reduced to 1%, 26%, − 14%,
and − 26%, respectively, in the high‐resolution simulations. Note that the very small bias in the SW‐HRESM over
BTH was partly caused by a positive bias in simulating the ozone exceedance at 60 and 70 ppbv, and a negative
bias at 80 ppbv; however, none of the absolute biases were >10% for any of these standards. A negative bias
indicates that there is room to improve the high‐resolution model to simulate high ozone concentrations, such as
those during episodic events.

3.3. Reasons for Ozone Improvement in High‐Resolution Simulations

To elucidate the potential mechanisms behind the reduced ozone overestimation in high‐resolution simulations,
we first examined the diurnal cycles of ozone concentrations in observations and model simulations across
different regions (Figure 6). This analysis revealed contrasting features between eastern China and the U.S. and
Europe, which likely result from differences in observation site locations. In eastern China, most observation sites
are located in urban areas, whereas in the U.S. and Europe, the majority of observations are taken in rural or
suburban areas. Specifically, in the U.S., in the daytime, defined as 8:00 to 18:00 local standard time, the ozone
difference between high‐ and low‐resolution simulations was 2.8 ppbv, whereas at nighttime, defined as the hours
outside of daytime, the ozone difference (1.3 ppbv) was less than half of that in the daytime. In eastern China, the
ozone differences between high‐ and low‐resolution simulations were comparably large in both the daytime (3.0
ppbv) and nighttime (3.0 ppbv). Over metropolitan areas (BTH), grid spacing could play a particularly important
role in nighttime ozone simulations. For example, the daytime ozone difference (5.8 ppbv) between high‐ and
low‐resolution simulations was only two‐thirds of that in the nighttime (8.8 ppbv). Moreover, for the PRD area,
where summer is not the ozone season owing to high rainfall, heavy cloud cover and insufficient downward
surface solar radiation (Kou et al., 2023), the differences in grid spacings affected the nighttime ozone difference
(7.3 ppbv) by more than twice as much as that in the daytime (3.4 ppbv).
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The phenomenon discussed above is likely associated with a shift in VOC‐limited or NOx‐limited chemical
regime. In the daytime, when photochemistry is strong, the mix of urban and rural areas in a coarse grid likely
shifts the ozone regimes. For example, during the daytime, mixing of air at coarse grid scales may bring extra
VOC emissions to NOx‐rich urban areas or NOx emissions to rural areas (because rural areas typically have
abundant VOC emissions and urban areas have abundant NOx emissions), facilitating ozone formation and
leading to ozone overestimation, which is the case for both the U.S. and eastern China. During the nighttime, NO
titration over urban locations, which is frequently observed in eastern China, is weakened at a coarse resolution
grid where NO is partly distributed to rural areas, leading to an ozone boost in urban areas. However, over rural
areas, the addition of NOx from urban areas does not play a large role because there are, in general, abundant VOC
emissions but ozone is limited by weak photochemistry during the nighttime.

Two cities were selected to delve further into the mechanism of the way in which grid spacing may affect
simulated daytime ozone. Los Angeles (34.5°N, 117.5°W) is a megacity that has faced ozone pollution for de-
cades; the megacity of Shanghai (31.5°N,121.5°E), having a comparable latitude to Los Angeles, was also
selected. In Figure 7, we display the ozone concentrations in the two grids in which these cities are located from

Figure 5. Days with ozone exceeding a certain value at x‐axis. Shown are results during the summers of 2015–2019 in
Beijing‒Tianjin‒Hebei (BTH; a), Jiangsu‒Anhui‒Shandong‒Henan (SWLY; b), Yangtze River Delta (YRD; c), and Pearl
River Delta (PRD; d) regions. The values on the x‐axis start from 20 ppbv because there are few days with a mean MDA8
ozone <20 ppbv. Regional mean MDA8 ozone was applied prior to the calculation, and the same grids between observation
and simulations were used in the comparison.
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the low‐resolution model (CESM‐LR; magenta dots), and the ozone concentrations in the corresponding 16 grids
in the high‐resolution model (SR‐HRESM; red dots), as well as the observed ozone (black dots) in grids where
data are available.

To delineate a VOC‐limited or NOx‐limited regime, we selected the ratio of HCHO to NO2 concentrations
(HCHO/NO2), which is a useful indicator to represent different ozone formation regimes (Martin et al., 2004;
Schroeder et al., 2017, 2020). A HCHO/NO2 value between 2.2 and 3.2 indicates a transition zone which is not too
sensitive to either VOC or NOx emissions; lower values tend to indicate a VOC‐limited regime; and regions with
higher values are likely NOx‐limited (Ren et al., 2022). Although the absolute threshold of HCHO/NO2 separating
VOC‐limited and NOx‐limited regimes typically varies by location, the relative value should work well. Prior to
interpretation of this ratio, we display the emission intensity of HCHO and NO2 for the high‐ (0.25° × 0.25°) and
low‐resolution (1.0° × 1.0°) grids, over a 3° × 3° square box centered by Los Angeles and Shanghai (Figures S11
and S12 in Supporting Information S1). Although the overall emission intensity is quite comparable between
high‐ and low‐resolution (in general within 10%) emissions over either Los Angeles or Shanghai, the spatial
pattern could be quite different. The high‐resolution emissions reveal much stronger spatial gradient which are
largely missed in the low‐resolution emissions.

Figure 6. Diurnal cycles (local standard time) of ozone concentrations during the summers of 2015‒2019. Regional mean ozone is shown for each region (a–h) by
pairing the grids where observations exist. Observations are shown by the black dots and the CESM‐LR and SW‐HRESM simulations are shown by the blue and red
curves, respectively. Note: SEUS= Southeastern U.S.; BTH = Beijing‒Tianjin‒Hebei; SWLY = Jiangsu‒Anhui‒Shandong‒Henan; YRD =Yangtze River Delta; and
PRD = Pearl River Delta.

Figure 7. Mechanism governing daytime ozone differences between high‐ and low‐resolution simulations. Shown are results
from (a) Los Angeles and (b) Shanghai. The solid blue histograms show the ratios of HCHO to NO2, corresponding to the
left‐hand y‐axes. The blue hatched histograms are from the CESM‐LR, while the first 16 groups (histograms and dots) are
data from the corresponding 16 grids in the high‐resolution simulations. The dots represent the ozone concentrations from
observations (black), SW‐HRESM (red), and CESM‐LR (magenta), and correspond to the right‐hand y‐axes.
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In both Los Angeles and Shanghai, among the 16 grids, there is a mixture of VOC‐limited and NOx‐limited
regimes based on the HCHO/NO2 ratio (solid blue histograms in Figure 7). However, after mixing these 16 grid
boxes into a single grid box in the low‐resolution model, heterogeneities in the ozone regimes result in a tran-
sitional regime in which VOC and NOx emissions can more efficiently mix and react to form ozone, generally
enhancing the ozone production efficiency and leading to an increase in ozone concentrations. This mechanism is
depicted in the schematic diagram in Figure 8, which is well supported by the theoretical diagram shown in Figure
10 of Sillman et al. (1990a).

4. Discussion and Conclusions
In this study, a high‐resolution Earth systemmodel (SW‐HRESM) was optimized computationally and physically
to effectively simulate ozone concentrations. Targeting the long‐standing issue of ozone overestimation in low‐
resolution Earth system models, by using one model of CESM, we first identified the ozone dry deposition
velocity as a key variable contributing to this ozone bias. After adjusting the representation of stomatal
conductance and leaf cuticle conductance, we achieved substantial model improvement by increasing the ozone

Figure 8. Schematic diagram of ozone simulations in urban and rural areas. In regions where urban and rural areas are
adjacent to each other, urban areas generally tend to be VOC‐limited and rural areas are NOx‐limited. Coarse grid spacings,
such as 1° or larger, mix the urban and rural emission sources, resulting in urban NOx emissions and rural VOC emissions
being redistributed and mixed, forming a new transition zone that facilitates ozone formation in both areas during the
daytime. During the nighttime, the assignment of urban NOx emissions to rural areas may weaken urban NO titration, leading
to ozone concentration increases.
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dry deposition velocity, which reduced the ozone overestimation to a certain extent. Given the lack of widespread
observations of ozone dry deposition velocity, additional observational evidence in the future would greatly
benefit model development and advance understanding of the role of ozone deposition.

Previous studies evaluating global simulated ozone have primarily focused on regions such as the U.S. and
Europe owing to the availability of observational data, while regions with more severe ozone problems, such as
eastern China, have received much less attention. We evaluated high‐resolution ESM simulations, which greatly
reduced the ozone biases present at low‐resolution with the same model when compared to the observational data
during 2015–2019. Furthermore, we determined that the mechanism behind bias reduction in these simulations
(compared with the low‐resolution counterpart) is associated with a shift in chemical regime, and that the biases
show distinct diurnal differences between urban and rural areas. In rural areas, the effect of increased grid spacing
has greatest effect during the daytime; for example, in a coarse resolution grid, extra NOx emissions are
distributed to rural areas, facilitating an ozone boost in these areas, leading to a large ozone overestimation. Over
urban areas, the daytime mechanism is comparable to that in rural areas because there are extra VOC emissions
coming from rural areas, thus enhancing ozone concentration. In contrast, during the nighttime, NOx emissions
assigned to rural areas in a coarse grid weaken NO titration over urban areas, and so there is reduced ozone
removal during the nighttime over urban areas.

In this study, we examine the issue of ozone overestimation based on a high‐resolution Earth system model.
Considering that biases in historical simulations may alter the signal of future ozone changes under a warming
climate, this newly optimized high‐resolution Earth system model is expected to be very useful in enhancing
understanding of ozone changes in the future and the associated impacts on human health and crops, which are
vital issues that urgently require further investigation.

This study is subject to some limitations. Firstly, this study applies one high‐resolution model, to demonstrate the
usefulness of applying the finer resolution grid spacings in better resolving ozone chemistry regime, and more
studies are called for in particular at the high‐resolution scales to further warrant the robustness of the finding.
Secondly, the horizontal resolution in this study is at 25 km, which not necessarily can fully resolve urban and rural
areas, and an even higher horizontal resolution might be needed to better capture small‐scale ozone dynamics and
associated physical processes, such as deep convection (Marotzke, 2023). Thirdly, the assessment on surface
ozone in this study is based on simulations without nudging, and changes in meteorology may yield different
results. For instance, a study based on CESM simulations with regional refinement (as high as 7 km over Korea)
indicates an overall improvement of high‐resolution but not always (Jo et al., 2023). While we believe our overall
findings of the contrasts between the high and low‐resolution models should hold, how the high‐ and low‐
resolution models behave on the daily basis is of great interest to examine in future. Fourthly, recent studies
based on regional models stress that biogenic emissions, important precursors of ozone, from urban greenspaces
are often neglected, which can lead to underestimation of ozone formation during episodic events (Gao
et al., 2022a; Ma et al., 2022). Although mean ozone concentration is overestimated in Earth system models, how
they behave in episodic events remains an important issue to examine. And the missing of urban greenspaces is the
fact in both high‐ and low‐resolution models used in this study, and likely in many other models, which requires an
urgent need to resolve upon ultrafine resolution land cover data, for example, at 10‐m (Gbodjo et al., 2020; Xu
et al., 2022). Lastly, the exchange between the stratosphere and troposphere can influence surface ozone con-
centrations, and the impact of the high‐resolution modeling on STE still requires further investigation. Therefore,
high‐resolution Earth system model simulations on air quality remain to be great challenges by resolving all these
issues and those not mentioned here, and community efforts might speed up the progress and eventually enhance
the confidence of future air quality projections, as well as the interactions between climate and air quality.

Data Availability Statement
The raw CESM model output data are available from the iHESP data portal (https://ihesp.github.io/archive/
products/ihesp‐products/data‐release/DataRelease_Phase2.html).
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