
Abstract  Terrestrial ecosystems have a significant role in shaping the distribution of atmospheric 
CO2, but it is uncertain how much they affect CO2 concentrations. We assessed the impact of terrestrial 
fluxes derived from different biosphere models in the Multi-scale Synthesis and Terrestrial Model 
Intercomparison Project (MsTMIP) on atmospheric CO2 estimations based on a global chemical 
transport model (GEOS-Chem) when these fluxes were applied as prior information. We examined the 
spatiotemporal uncertainty in terrestrial flux estimations from 15 MsTMIP terrestrial fluxes. We found 
high uncertainties in the terrestrial fluxes for temperate North America, tropical and temperate South 
America, southern Africa, Europe and tropical Asia. Sensitivity simulations showed that the annual mean 
CO2 concentration changed by 6.0–8.0 ppmv with the spread of the terrestrial fluxes. The interannual 
trend in the terrestrial fluxes could significantly affect the simulated trend of atmospheric CO2 
concentrations. As a result of the spread in the prior terrestrial fluxes, large differences in the daily mean 
CO2 anomalies changed with an interquartile range of −1.0 to +1.0 ppmv and the magnitude of change 
in the sub-daily CO2 concentrations was in the range 4.0–6.0 ppmv for China, the USA and Europe. Our 
results suggest an urgent need to increase the reliability of terrestrial flux estimates in CO2 simulations. 
Surface seasonal CO2 concentrations were simulated to change by ±2.0 ppmv in most regions of the 
world due to the differences in the ensemble mean fluxes, reflecting the impact of the uncertainties in the 
existing optimized terrestrial fluxes on CO2 simulations.

Plain Language Summary  The variations in atmospheric CO2 concentration are closely 
related to the changes in anthropogenic and natural carbon sources and sinks. Since the preindustrial 
time, the increases in atmospheric CO2 concentration are mainly caused by fossil fuel burning and 
land use change. Terrestrial ecosystems play an important role in modulating the atmospheric CO2 
concentrations since they can uptake CO2 emitted from human activities. Many efforts have been made to 
quantify the magnitude and distribution of CO2 uptake by terrestrial ecosystems, but current estimations 
of terrestrial fluxes still have large uncertainties. It is of great interest to quantify how the uncertainties 
in terrestrial flux can influence simulated CO2 concentrations. Our study shows that the simulated 
atmospheric CO2 concentrations at different time scales are sensitive to the uncertainties in terrestrial 
flux. The simulated annual mean CO2 concentrations differ by 6.0–8.0 ppmv when different terrestrial 
flux estimations are used. Daily CO2 anomalies are simulated to change within −1.0 to +1.0 ppmv with 
the spread of terrestrial fluxes. Hourly CO2 concentrations could be altered by 4.0–6.0 ppmv due to the 
differences in terrestrial fluxes. Results from this study have important implications for predicting future 
atmospheric CO2 concentrations and for making plans of CO2 emission control measures.
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1.  Introduction
Atmospheric carbon dioxide (CO2) is thought to cause the largest radiative forcing responsible for the cur-
rent global climate crisis. The annual mean atmospheric CO2 concentrations at the Mauna Loa Observatory, 
Hawaii, has increased from about 370 ppm in the year 2000 to about 413 ppm in the year 2020, with a rela-
tively high growth rate every year (www.esrl.noaa.gov/gmd/ccgg/trends/).

Atmospheric CO2 levels are governed by the global budget of the carbon cycle, which includes two major 
components: (a) anthropogenic emissions from fossil fuel combustion and changes in land use (mainly 
land clearance); and (b) carbon fluxes from the natural carbon cycle, such as exchanges between the atmos-
phere and the terrestrial biosphere or oceans (Friedlingstein et al., 2020). Large variations in predictions of 
atmospheric CO2 concentrations are related to biases in these terrestrial carbon sources and sinks (Bauska 
et al., 2015; Keenan et al., 2016; Schimel et al., 2001, 2015). An improved understanding of the magnitude 
of, and uncertainties in, current estimates of carbon exchange between the atmosphere and biosphere is 
crucial in determining the environmental and climate actions required to regulate anthropogenic CO2 emis-
sions on global and regional scales.

There have been many attempts to estimate the terrestrial carbon budget accurately. Previous studies have 
suggested that the terrestrial biosphere could take up carbon at a rate of about 1.0–4.0 Pg C yr−1 and offset 
about 20%–60% of the carbon emitted from fossil fuels (IPCC, 2013). Although it is agreed that the terrestrial 
ecosystem acts as a key mitigating pathway of current climate change, the global and regional patterns of 
the terrestrial carbon flux and its estimation are still unclear and unconstrained. Some researchers have pro-
duced terrestrial carbon fluxes via process-based dynamic vegetation models or data-driven biosphere mod-
els (a bottom-up approach) (Le Quéré et al., 2018; Piao et al., 2009; Sitch et al., 2015; H. Tian et al., 2015). 
However, there are large spatiotemporal discrepancies in the existing terrestrial carbon inventories. The 
underlying reasons for such differences are differences in the data for environmental drivers and the phys-
ical, chemical and biological processes and parameters used in biospheric models (Huntzinger et al., 2013; 
Wei et al., 2014)—for example, the complex mechanisms of ecosystem functions, the large heterogeneity of 
vegetation and soils, and the effects of human and other disturbances (e.g., changes in land use and fires) 
(S. Liu et al., 2011; Piao et al., 2009; Schimel, 1995; Sitch et al., 2015; Zeng et al., 2005).

Other researchers have estimated carbon budgets through a top-down method—for instance, atmospher-
ic inversions, which infer the posterior CO2 flux by using the prior flux and an inverse modeling system 
based on atmospheric transport models with atmospheric CO2 observations and/or satellite observations 
(D. F. Baker et al., 2006; Chevallier et al., 2005; Gurney et al., 2002, 2003, 2004; J. Liu et al., 2017; Peters 
et al., 2007; Peylin et al., 2013; Wang, Feng, et al., 2020). Top-down methods can help reduce the uncertainty 
in terrestrial fluxes, but the uncertainties in the terrestrial carbon budget from this approach probably arise 
from the differences in the inversion methods (Crowell et al., 2019; Houweling et al., 2015), atmospheric 
transport uncertainties (Basu et  al.,  2018; Houweling et  al.,  2010; Schuh et  al.,  2019) and the accuracy 
and precision of the atmospheric CO2 observations used. These observations include in situ data, aircraft 
observations, the Greenhouse Gases Observing Satellite (GOSAT) and the Orbiting Carbon Observatory 2 
(OCO-2) XCO2 retrievals (J. Liu et al., 2017; Thompson et al., 2016; X. Tian et al., 2014; Zhang et al., 2014; 
H. Wang et al., 2019). Uncertainties also arise from prior flux estimates and their assumed uncertainty (D. 
F. Baker et al., 2010; Chevallier et al., 2005; Gurney et al., 2003; Philip et al., 2019). There are currently large 
differences in the terrestrial estimates calculated by the bottom-up biosphere models and the top-down 
inverse atmospheric models (Wang, Feng, et al., 2020).

Global or regional chemical transport models (CTMs) are often used in forward simulations of atmospheric 
CO2 concentrations and the inverse model of terrestrial carbon flux estimates. Atmospheric CO2 simula-
tions in CTMs are driven and constrained by CO2 emission inventories and fluxes and are mediated by 
atmospheric transport (Krol et al., 2005; Nassar et al., 2010). However, the estimates of CO2 terrestrial fluxes 
in most CTM models are often treated as known quantities in each grid of the CTM, with spatiotemporal 
variations at different resolutions. Other sources (e.g., emissions from fossil fuels) are often presented in this 
way using emission inventories. The uncertainties in the terrestrial CO2 fluxes are set aside when running 
the CO2 simulations. This means that errors in the prior CO2 sources and sinks may be translated into biases 
in the atmospheric CO2 concentrations, as well as errors in estimates of the terrestrial biosphere fluxes in 
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inversion models (e.g., Gurney et al., 2003; Philip et al., 2019). For instance, Gurney et al. (2003) examined 
the sensitivity of CO2 flux inversions to different transport models and the uncertainty in prior fluxes. They 
showed that the posterior estimates of terrestrial fluxes generated the largest variation because the prior 
fluxes changed over regions in the northern hemisphere with limited in situ observational data.

Philip et al. (2019) assessed the impact of different prior biospheric fluxes on inverse model estimates of 
terrestrial CO2 fluxes using a series of observing system simulation experiments with OCO-2 observations. 
They found a larger spread among posterior net ecosystem exchange (NEE) estimates in regions and sea-
sons that had limited coverage from satellite observations and large uncertainties in the prior NEE fluxes. 
The standard deviations of the seasonally averaged posterior NEE estimates for TransCom-3 land regions 
were about 10%–50% of the multi-model mean NEE when using different prior NEE fluxes.

The spatiotemporal characteristics of atmospheric CO2 concentrations are a key target on global and region-
al scales. CTMs provide an opportunity to investigate the changes in CO2 concentrations in detail and have 
the advantage of continuity and large-scale operations, which is important in modeling the Earth's climate 
and environment. Few studies have evaluated the impacts of different biosphere fluxes and associated un-
certainties on the variations in forward CO2 simulations. Biases in terrestrial fluxes could lead to discrep-
ancies of about 5.0 ppm in seasonal concentrations of CO2 (Chen et al., 2013; Messerschmidt et al., 2013). 
However, previous studies have focused on the impacts of only two or three terrestrial fluxes on sub-annual 
CO2 cycles (monthly or seasonal). Increasing numbers of studies have shown that the variations in CO2 on 
finer spatiotemporal scales (e.g., hourly or daily) are important in estimating carbon emissions from cities 
with high levels of human activity (Duren & Miller, 2012; Gurney et al., 2015). The uncertain influence of 
terrestrial fluxes on variations in CO2 simulations on finer timescales (e.g., sub-daily or diurnal) has not 
been well studied. A thorough exploration of the influence of terrestrial fluxes on the variation in CO2 sim-
ulations on different timescales is essential and this knowledge would provide valuable information to help 
our understanding of the sources and sinks of CO2 and the carbon cycle on different spatial scales.

Philip et al. (2019) studied the impact of four different biosphere models and the ensemble mean NEE from 
the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) on estimates of the ter-
restrial NEE flux inferred from the “top-down” GEOS-Chem adjoint model with OCO-2 retrievals. We aim 
to quantitatively understand the implications for forward simulations of atmospheric CO2 concentrations 
resulting from terrestrial fluxes and their uncertainties. This will help to gain a better understanding of the 
roles of the prior terrestrial carbon flux and its uncertainty on atmospheric CO2 inversion and assimilation 
from a different perspective. To achieve this goal, we examined the sensitivity of atmospheric CO2 concen-
trations, including annual and sub-annual cycles, to the variations in the terrestrial flux using a global CTM 
(GEOS-Chem) and an ensemble product of the multi-model ensemble results of terrestrial fluxes (NEE) 
from MsTMIP. Section 2 describes the model, methods and data and Section 3 presents the results of the 
sensitivity experiments. Our conclusions and the implications of this study are summarized in Section 4.

2.  Materials and Methods
2.1.  Model Description

We used the GEOS-Chem version 11-01 global CTM (http://acmg.seas.harvard.edu/geos/) driven by the 
MERRA-2 meteorological fields (Gelaro et al., 2017) to simulate atmospheric CO2 concentrations. The mod-
el grid was run at (2.5° longitude × 2.0° latitude) with 47 reduced vertical layers up to 0.01 hPa. The current 
CO2 simulation in GEOS-Chem was developed by Suntharalingam et  al.  (2004) and updated by Nassar 
et al. (2010, 2013). Simulation of CO2 in the model is conducted as a separate tracer simulation with the pre-
scribed CO2 sources and sinks, including fossil fuel combustion and cement production, biomass burning, 
biofuel burning, atmosphere–terrestrial ecosystem exchanges, atmosphere–ocean exchanges, and shipping 
and aviation, in addition to the production of chemicals from the oxidation of carbon monoxide, methane 
and non-methane volatile organic compounds.

Table 1 describes the specific emission inventories of CO2 used in this work. In the original GEOS-Chem 
CO2 simulation, the NEE of the CO2 flux for the years 2006–2010 from the Simple Biospheric Model ver-
sion 3 (Sib3) was applied to estimate the atmosphere–terrestrial biosphere carbon exchange (Messer-
schmidt et al., 2013). The NEE is the net difference between the gross uptake of CO2 by plants through 
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photosynthesis (gross primary production) and the total ecosystem respiration (the sum of 
autotrophic and heterotrophic respiration) (Philip et al., 2019). A positive value of the NEE 
commonly represents a net CO2 flux from the ecosystem to the atmosphere (referred to as 
a land carbon source) and a negative value of the NEE represents the net removal of CO2 
from the atmosphere to the ecosystem (referred to as a land sink) (Hayes & Turner, 2012).

2.2.  Terrestrial Carbon Flux Data

To investigate the impact of the terrestrial CO2 flux on CO2 concentrations, we replaced 
the terrestrial CO2 flux in the original model with a suite of global NEE products with 
three-hourly time steps from terrestrial biosphere models under the MsTMIP pro-
ject (Huntzinger et al., 2013, 2018) (version 1). These products were obtained from the 
NASA Carbon Monitoring System (https://daac.ornl.gov/CMS/guides/CMS_CO2_Flux-
es_TBMO.html). This data set was created based on the monthly output of terrestrial bio-
sphere model (TBM) data from MsTMIP by Fisher et al. (2016) using a temporal downscal-
ing method. They evaluated these NEE data reproduced by temporal downscaling from the 
LPJ model by comparison with the observed NEE at Tonzi Ranch AmeriFlux/FlUXNET 
sites (Baldocchi et al., 2001; Baldocchi & Ma, 2013) and showed that the reproduced NEE 
agreed well with the observational data.

As described by Fisher et al. (2016), the NEE of 15 TBMs are included in this product: (a) 
BIOME_BGC (Thornton et al., 2002); (b) CLM (Mao et al., 2012); (c) CLM4VIC (Lei, Huang, 
et al., 2014); (d) CLASS_CTEM (Huang et al., 2011); (e) DLEM (H. Tian et al., 2012); (f) 
GTEC (Ricciuto et al., 2011); (g) ISAM (Jain & Yang, 2005); (h) LPJ-wsl (Sitch et al., 2003); (i) 
ORCHIDEE (Krinner et al., 2005); (j) SIB3 (I. T. Baker et al., 2008); (k) SIBCASA (Schaefer 
et al., 2008); (l) TEM6 (Hayes et al., 2011); (m) TRIPLEX-GHG (Peng et al., 2002); (n) VE-
GAS2.1 (Zeng et al., 2005); and (n) VISIT (Ito, 2010). The multi-model ensemble NEE mean 
from MsTMIP is also provided in this product. The ensemble NEE means from MsTMIP 
include two forms: the unweighted ensemble NEE (referred to as ENM) and the weighted 
ensemble NEE (referred to as EOM). Following the method of Schwalm et al. (2015), the 
ENM represents the result of combining ensemble models to a single integrated mean value 
in which each model is weighted equally, whereas the EOM represents the result of combin-
ing ensemble models into a single integrated mean value in which each model's weight (the 
reliability factor) is derived using reliability ensemble averaging. For example, the reliability 
factors for each model are calculated using seven reference factors related to the gross prima-
ry production and vegetation biomass in each grid cell. Each model's weight therefore varies 
at the grid cell level. Detailed descriptions of the ensemble products and the MsTMIP model 
output data can be found in Fisher et al. (2016).

2.3.  Satellite Observations

The column-averaged dry air mole fraction of CO2 ( co2E X ) retrieved from satellite data offers 
a way to investigate the spatiotemporal variations in CO2 concentrations. We used the GO-
SAT/ACOS co2E X  level 2 products (GOSAT/ACOS_L2_Lite_FP.7.3) (Osterman et al., 2017) 
for the year 2010 for a comparative analysis of simulated CO2 concentrations. Validations 
of GOSAT co2E X  against the Total Carbon Column Observing Network data have shown that 
the mean bias between ACOS and the Total Carbon Column Observing Network observa-
tions is <1.5 ppm (GES DISC, 2017; Wunch et al., 2011). In this product, we use “xco2_
quality_flag” as an indicator to filter the soundings based on quality; this applies several 
quality filters based on auxiliary variables (e.g., aerosols, clouds and pressure differences) 
that correlate with excessive co2E X  scatter or bias (GES DISC, 2017). “xco2_quality_flag” is 
simply a byte array of zeros (for good soundings) and ones (for bad soundings) and there-
fore only good soundings were used in our study. We only considered GOSAT retrievals 
with solar zenith angles within 10° and 80° and latitude limits within 80°S and 80°N. De-Ta
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tails of the products are available at https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/ACOS_
v7.3_DataUsersGuide-RevF.pdf (last accessed June 28, 2021).

To examine the performance of GEOS-Chem, the co2E X  values derived from model simulations ( co _ mod2E X ) 
were compared with the GOSAT observations ( co _ obs2E X ). The simulated CO2 concentrations were converted 
into column-averaged values by first calculating the CO2 profiles that were at the same levels as the GOSAT 
data profiles and then calculating co _ mod2E X  at the corresponding times and locations of the satellite meas-
urements following Equation 1 (Connor et al., 2008; Feng et al., 2009).

 co _ mod CO2 2
a T

aX X h A x x  � (1)

where aE x  and CO2
aE X  are the prior CO2 profile of GOSAT and the associated prior column-averaged amount, 

respectively. E h is a pressure weighting function, E A is the full averaging kernel matrix and E x is the model-cal-
culated CO2 profile.

2.4.  In Situ CO2 Observations

Atmospheric surface CO2 observations were obtained from a global network maintained by the Carbon 
Cycle Greenhouse Gases Group of the National Oceanic and Atmospheric and Atmospheric Administration 
Earth System Research Laboratory (NOAA-ESRL), where CO2 is measured either continuously in situ or 
by flask air samples. Most of the sites are currently incorporated into the Observation Package data prod-
ucts (GLOBALVIEW CO2) (Masarie et al., 2014; https://gml.noaa.gov/ccgg/obspack/) and are also available 
from the World Data Center for Greenhouse Gases (https://gaw.kishou.go.jp/). These surface CO2 observa-
tions have been widely used to support many previous global and regional CO2 simulation studies (Chen 
et al., 2013; Fu et al., 2020; Li et al., 2017; Nassar et al., 2010; Peylin et al., 2013; H. F. Zhang et al., 2014).

Based on a coherent set of NEE data from MsTMIP, the simulations in our study accounted for the impacts 
of changes in terrestrial carbon flux on atmospheric CO2 concentrations in the time period 2004–2010. 
We therefore collected in situ monthly CO2 flask observations at about 38 global sites from NOAA-ESRL's 
Global Monitoring Laboratory (https://gml.noaa.gov/aftp/data/trace_gases/co2/flask/surface/), for which 
measurements are continuously available from 2004 to 2010 (Dlugokencky et al., 2021). Table S1 gives in-
formation about the surface sites used in this work.

2.5.  Simulations and Methods of Analysis

We performed a series of model experiments (Table 1) to simulate atmospheric CO2 concentrations using 
alternative terrestrial CO2 fluxes from the MsTMIP project with the same meteorological fields and other 
sources of CO2 fluxes (e.g., fossil fuel, biomass, and biofuel emissions). The resulting discrepancies in the 
simulated atmospheric CO2 concentrations were induced by the differences in the terrestrial CO2 fluxes 
alone. Following the approach of Nassar et al. (2010, 2011), all the simulations were initialized on Janu-
ary 1, 2003 with a globally uniform CO2 field of 373.71 ppmv based on the monthly mean sea surface CO2 
concentration at Mauna Loa Observatory, Hawaii from the NOAA-ESRL. For each experiment, seven-year 
simulations from 2004 to 2010 were performed for consistency with the time range of the NEE data. For 
model evaluation, the simulations were conducted with an ensemble mean NEE of the MsTMIP models. We 
compared the results for eastern China (20°–40°N, 105°–122°E), western Europe (35°–60°N, 10°W–20°E) 
and the eastern USA (30°–45°N, 75°–90°W).

We used the similarity index (Ω) applied by Koster et al. (2000), which measures the phase and shape sim-
ilarity among members of an ensemble forecast, to quantify the sensitivity of the atmospheric CO2 simula-
tions to the multi-model terrestrial flux uncertainties:

 
2 2

21
b

x
m
m
 




 


� (2)

1
x

x
 

� (3)
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flx



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https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/ACOS%5Fv7.3%5FDataUsersGuide%2DRevF.pdf
https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/ACOS%5Fv7.3%5FDataUsersGuide%2DRevF.pdf
https://gml.noaa.gov/ccgg/obspack/
https://gaw.kishou.go.jp/
https://gml.noaa.gov/aftp/data/trace%5Fgases/co2/flask/surface/
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where xE   represents an uncertainty index derived from the similarity index Ω and γ represents the sen-
sitivity index. 2

bE   and 2E   are the temporal variance of the ensemble mean and the full-sample variance, 
respectively:

 22
1

1 n
b j jb x

n
   � (5)

 22
1 1

1 m n
i j ijx x

mn
     � (6)

where 
1

1 m

j ij
i

E b x
m 

  , 
1

1 n

j
j

E x b
n 

  , n denotes the time period and m is the number of ensemble members. If 

each ensemble member produces an identical time series, then 2
bE   will equal 2E   and Ω will equal 1. If the 

time series are completely uncorrelated, then 2
bE   is expected to be approximately  2

/m. Therefore the value 
of Ω will vary from approximately 0 to 1, with values closer to 1 suggesting a greater degree of similarity. 
This approach was used to quantify the sensitivity of snow simulations to different atmospheric forcing data 
in previous studies (e.g., Wang, Xie, et al., 2020). In this work, the sensitivity index measures the uncertain-
ty in the ensemble of model simulations for CO2 concentrations to the uncertainties in the corresponding 
terrestrial NEE fluxes from MsTMIP. High values indicate high sensitivity and low values indicate low 
sensitivity.

3.  Results and Discussion
3.1.  Prior Terrestrial Flux Estimates

Figures 1a and 1b show the distribution of the seasonal mean terrestrial carbon fluxes based on the en-
semble results of MsTMIP averaged over the time period 2004–2010. Based on the seasons in the northern 
hemisphere, large terrestrial CO2 sinks are found in the tropical areas of South America and South Africa, as 
well as the eastern USA, eastern China and Europe in summer and spring. Small terrestrial CO2 sources are 
found in the boreal and temperate climate regions, such as Boreal North America, Boreal Eurasia, and West-
ern Australia in winter and autumn. Such seasonal cycles of the terrestrial flux are related to the seasonality 
of photosynthesis and respiration of vegetation. Figures 1a and 1b also show the standard deviation across 

Figure 1.  Multi-model seasonal averaged net ecosystem exchange (NEE) (kg C m−2 yr−1) and the standard deviation of the NEE from (a) the unweighted 
ensemble mean (ENM) and (b) the weighted ensemble mean (EOM) of MsTMIP over the time period 2004–2010.



Journal of Geophysical Research: Atmospheres

FU ET AL.

10.1029/2021JD034794

8 of 22

the 15 prior model fluxes, indicating a large uncertainty in both the magnitude and sign of terrestrial carbon 
fluxes during all seasons. This is typically highest in certain regions (e.g., South America at mid- and low 
latitudes, North America at mid- and high latitudes, Europe and eastern China). The range of uncertainties 
in terrestrial fluxes is locally up to 0.12 kg C m−2 yr−1.

3.2.  Comparison Between Simulated X
CO2

 and GOSAT X
CO2

The simulated atmospheric CO2 concentrations based on the GEOS-Chem model have been widely used 
in previous studies (Cogan et al., 2012; Feng et al., 2011; Fu et al., 2020; Lei, Guan, et al., 2014). Large var-
iations in the total terrestrial flux are found among the 15 models in MsTMIP. Here, the ensemble means 
(ENM and EOM) of the terrestrial fluxes from MsTMIP are taken as “reasonable” NEE fluxes because the 
ensemble fluxes are close to the optimized fluxes from CarbonTracker (e.g., CT2016; see supplementary 
materials), which is a widely used inverse model of atmospheric CO2 (Peters et al., 2007, with updates docu-
mented at http://carbontracker.noaa.gov). The resulting CO2 concentrations from simulations S_ENM and 
S_EOM were used for model evaluation and comparison with the GOSAT CO2E X , respectively.

Figure 2 shows the correlations between the simulated and observed CO2E X  for the year 2010. Globally, there 
was general agreement between the simulated co _ mod2E X  and GOSAT co _ obs2E X  with correlation coefficients 
of 0.78 (P < 0.05) and 0.75 (P < 0.05) for simulations S_ENM and S_EOM, respectively, suggesting that the 
GEOS-Chem model can reasonably capture the spatiotemporal variations in the observed CO2E X . The overall 
correlation between CO2E X  in the S_ENM and GOSAT simulations is a little higher than those between 2COE X  
in the S_EOM and GOSAT simulations, indicating the uncertainty in “optimal” integrations of TBMs that 
depend on different ensemble methods and the uncertainty associated with other carbon sources and sinks 
in the model (e.g., fossil fuel emissions, biomass emissions, and ocean fluxes).

The distribution of the biases between the simulations and observations shows large spatial discrepancies 
based on simulations S_ENM and S_EOM, especially on a regional scale (Figure 3). For example, the simu-
lated values of CO2E X  from S_ENM are generally higher than those from GOSAT over China, Europe and the 
USA, whereas the simulated values of CO2E X  from S_EOM are broadly underestimated over the same regions. 
This is because the estimates of the land biosphere sink over these regions are substantially larger (i.e., more 
uptake) in the EOM simulation than the estimates of ENM.

The ensemble NEE mean from MsTMIP shows higher annual global sinks of −4.37 Pg C yr−1 in the EOM 
simulation than in the ENM simulation (−3.89 Pg C yr−1) in the year 2010. The different model perfor-
mances with ENM or EOM fluxes in the comparison with the GOSAT CO2E X  indicated that the uncertainty 
in the multi-model ensemble mean fluxes is dependent on the region. Overall, the difference between 
the GEOS-Chem and GOSAT values of CO2E X  varied from −4.0 to +4.0 ppmv in most places in the world. 
For seasonal concentrations, the mean point-by-point biases varied from −0.08 to −2.3 ppmv, with large 

Figure 2.  Scatter plots of the simulated co _ mod2E X  based on simulations with the ensemble mean net ecosystem exchange and observed co _ sat2E X  for the year 
2010. The root-mean-square error and correlation coefficient between the simulation and observations are also shown.

http://carbontracker.noaa.gov
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biases occurring in December–January–February and March–April–May and small biases in June–July–
August and September–October–November for both simulations S_ENM and S_EOM (Table  2). This 
suggests that the GEOS-Chem CO2 simulation performs better in summer than in other seasons. This 
finding is consistent with the results from previous studies (Lei, Guan, et al., 2014; Li et al., 2017; H. 
Zhang et al., 2015).

Such discrepancies in the comparison of the CTM and GOSAT CO2E X  at the seasonal scale is probably due 
to the uncertainties in the terrestrial flux estimations and other emission inventories in different seasons. 
Huntzinger et al. (2013) showed that the uncertainty in terrestrial flux estimations is dependent on season 
by comparing different regions. In addition, GOSAT may capture the spatial heterogeneity and temporal 
variations in CO2 caused by changes in carbon sources and sinks better than the CTM model, which is con-
strained by emissions inventories (Li et al., 2017). The GOSAT measurements have a constant sensitivity to 

Figure 3.  Comparisons of the biases ( co _ mod2E X  minus co _ sat2E X ) in Eastern Asia, Europe, and North America for the year 
2010. Simulated co _ mod2E X  from (a) the S_ENM simulations and (b) the S_EOM simulations.
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the entire atmospheric column and show the maximum sensitivity to changes in CO2 concentrations near 
the surface (H. Zhang et al., 2015).

Some studies have indicated that the exchange of CO2 between the upper troposphere and lower strato-
sphere at high latitudes and in the mid- and upper troposphere at subtropical and mid-latitudes affect CO2 
concentrations in December–January–February and March–April–May, but the model is prone to under-
estimate CO2 concentrations in the upper troposphere of the tropics and subtropics and overestimate CO2 
concentrations in the lower stratosphere of the extratropical regions because the model does not correctly 
simulate the impacts of stratospheric intrusion (Miyazaki et al., 2008; Deng et al., 2015).

3.3.  Comparison Between Simulated CO2 and In Situ CO2 Observations

To evaluate the ability of GEOS-Chem to simulate the seasonal and interannual variations in surface CO2 
concentrations, we compared the monthly simulated surface CO2 concentrations from the simulations for 
different terrestrial fluxes with surface measurements at 38 sites around the world in the time period 2004–
2010. The simulations with the ENM and EOM fluxes performed best when compared with observations 
at all sites. The correlations between the S_ENM simulations and the observations were very close to the 
correlations between the S_EOM simulations and observations at all 38 sites, ranging from 0.8 (SDZ) to 
almost 1.0 (e.g., CGO, CRZ, HBA, and SPO) (Figures 4 and S2). However, the absolute value of the mean 
bias between the observations and the S_ENM simulations averaged over 2004–2010 are generally smaller 
than those between the observations and S_EOM simulations at 80% of the sites (in which 60% of the mean 
bias was <1.0 ppm), suggesting that the GEO-Chem simulation may perform best when using the ENM 
flux. The average simulated CO2 concentrations from both the S_ENM and S_EOM models at all sites were 
0.44 ppm and 1.2 ppmv lower than the observations, respectively, whereas the simulated CO2 concentra-
tions were overestimated at some sites (e.g., BKT, HUN, and WIS). Among all sites, large biases were found 
at sites BKT, PTA, OXK, and THD, which were within the range −4.0 to +4.0 ppm based on the S_ENM and 
S_EOM simulations. Overall, GEOS-Chem can capture the seasonal and interannual variations in surface 
CO2 well at large scales.

When we compared the results from other sensitivity simulations using different terrestrial fluxes with the 
observations, we found that the performance of models varied greatly with different prior terrestrial fluxes. 
Although the simulations with most terrestrial fluxes of the MsTMIP model can captured the overall sea-
sonal and interannual variations in surface CO2, the mean biases between the observations and simulations 
showed a large discrepancy among all the simulations, ranging from −7.6 to +9.5 ppm. The simulated CO2 
concentrations from GEOS-Chem with the TRIPLEX-GHG NEE flux showed large inconsistencies with the 

DJF MAM JJA SON

Average Aobs 389.86 389.31 387.95 388.20

AS_EOM 387.60 387.07 386.86 387.04

AS_ENM 388.90 388.30 387.95 388.12

Standard deviation σobs 3.01 2.04 2.59 1.82

σS_EOM 2.12 1.46 1.01 0.70

σS_ENM 2.23 1.47 1.20 0.79

Bias (Sim-Obs) bS_EOM −2.26 −2.24 −1.09 −1.17

bS_ENM −0.96 −1.01 0.00 −0.08

Root mean square error RMSES_EOM 2.90 2.81 2.31 2.03

RMSES_ENM 2.03 1.97 1.87 1.61

Correlation coefficient RS_EOM 0.80 0.57 0.68 0.41

RS_ENM 0.80 0.58 0.75 0.47

Table 2 
Statistical Characteristics of the Simulated and Observed CO2 Column-Averaged Dry Air Mole Fractions ( CO2E X ; Units: 
ppmv) Averaged Globally for the Year 2010
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Figure 4.  (a) Correlation coefficient between the simulated surface CO2 concentrations from S_ENM and the observed CO2 concentrations at the in situ sites. 
(b) Mean bias between the observed surface CO2 concentrations and the simulated surface CO2 concentrations from S_ENM (units: ppmv).
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observations, in contrast with the observed increase in CO2. This is because the terrestrial carbon sinks are 
estimated to increase in TRIPLEX-GHG. The bias between the observed and simulated atmospheric CO2 
from S_TRIP is therefore excluded in the ranges given here.

3.4.  Modeling the Response of Atmospheric CO2 to Changes in Terrestrial Fluxes

Although the simulated CO2 concentrations derived from the ensemble fluxes generally converged with the 
observations, there were some differences between the ENM and EOM fluxes in terms of magnitude and 
distribution (Figure S1). In the time period 2004–2010, the annual mean terrestrial fluxes for the ENM and 
EOM simulations were −3.92 and −4.31 Pg C yr−1, respectively. Using model sensitivity simulations, we 
found that the differences between the EOM and ENM NEE could lead to changes in the annual and sea-
sonal mean CO2 concentrations by −2.0 to +2.0 ppmv globally (Figure 5). This suggests that there is a range 
in the bias for atmospheric CO2 among simulations using different ensemble mean fluxes obtained from dif-
ferent methods. Large differences in the CO2 concentrations between the S_EOM and S_ENM simulations 
were found in the southeastern USA and eastern Asia, where the highest CO2 concentrations were seen, 
indicating that the NEE estimates in these regions have a large uncertainty. More information can be found 
in the supplementary materials, which compare the fluxes in the TransCom regions from the ensemble 
mean of MsTMIP with the optimized flux from CarbonTracker (Table S2). Table S3 gives the discrepancies 
in the regional CO2 concentrations induced by the differences in the ensemble product.

The large diversity in the annual mean NEE was predicted by the biosphere models in MsTMIP. The esti-
mates of the global annual NEE were within the range −8.6 to −0.33 Pg C yr−1 averaged over 2004–2010, 
except for models TRIPLEX-GHG and SIB3. The magnitude of the CO2 sinks (−19.2 Pg C yr−1) from TRI-

Figure 5.  Distribution of the winter (DJF), summer (JJA) and annual mean (ANN) surface layer CO2 concentrations in the time period 2004–2010 from the (a) 
S_EOM and (b) S_ENM simulations. (c) Differences in surface CO2 concentrations between the S_EOM and S_ENM simulations.
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PLEX was more than twice that of the CO2 sinks from other models, whereas the estimate of the CO2 flux 
from vegetation (+0.38 Pg C yr−1) might be a CO2 source based on the SIB3 model. The deviation from the 
mean terrestrial flux based on MsTMIP ranged from −6% to 380% (Figure S3) and these discrepancies in the 
terrestrial fluxes among different models were clear at the scale of terrestrial ecosystems. A comprehensive 
assessment of the differences between the current in situ CO2 flux measurements in different ecosystems 
and estimates of the terrestrial flux based on multi-model ensembles are needed to give a clearer picture 
of the model performance and uncertainties in estimating terrestrial fluxes over large spatial and temporal 
scales. This is still a challenge for many countries (Jones et al., 2016; Piao et al., 2013; Sitch et al., 2015).

Figure 6 shows the spread in the annual mean CO2 concentrations simulated using different prior terres-
trial fluxes. The simulated annual mean surface CO2 concentrations in different terrestrial regions could 
be altered by 6.0–8.0 ppmv (25%–75% interquartile range) as a result of deviations in the terrestrial fluxes. 
In addition, large differences were found among the simulated interannual trends of surface CO2 concen-
trations when using different terrestrial fluxes as prior estimates (Figure  7). The simulated interannual 
variations in surface CO2 concentrations showed an overall increasing trend driven by most of the predicted 
terrestrial fluxes, but the interannual variations showed different behaviors, with a decreasing trend in two 
simulations of MsTMIP fluxes (CTEM and TRIPLEX-GHG). This deceasing trend was attributable to the 
large increase in the terrestrial uptake of CO2 in these biosphere models.

We examined the interannual trends of five representative background sites using linear regression—in-
cluding Mauna Loa and the Southern Great Plains in the USA, Waliguan in China, Pallas-Sammaltun-
turi in Finland and Cape Grim, Tasmania in Australia—based on the continuous measurements from 
NOAA-ERSL. The simulated interannual variations in surface CO2 from the S_EOM simulation agree well 
with the observed trend over 2004–2010 at Mauna Loa, Waliguan, Pallas-Sammaltunturi and Cape Grim 
(about 1.8–1.9 ppm yr−1), but tends to underestimate the interannual trend in the Southern Great Plains 
(2.64 ppm yr−1). The simulated interannual trends from the S_ENM model (about 2.0–2.1 ppm yr−1) are a 
little higher than the observations at these five sites.

Figure 7 shows that the trends in the simulated global mean surface CO2 concentration varied from −5.5 
to 4.0  ppmv  yr−1 during the time period 2004–2010 driven by changes in the terrestrial flux, which are 
consistent with the findings at in situ sites. This finding shows that an accurate prior terrestrial flux is cru-
cial for the correct simulation of the seasonal and interannual cycles of atmospheric CO2, indicating the 
upper limits of the effects of uncertainties in terrestrial fluxes on the interannual variations in atmospheric 
CO2 concentrations. Evaluation of the spatiotemporal variation in CO2 concentrations using both in situ 
measurements and satellite observations might also provide some limited insights into the quality of the 
GEOS-Chem CO2 simulation using different prior terrestrial fluxes. For instance, the choice of ensemble 

Figure 6.  (a) Boxplot of the annual terrestrial fluxes over 11 land regions based on the net ecosystem exchange results of 15 biosphere models from MsTMIP. 
(b) Boxplot of the annual mean surface CO2 concentrations averaged over 11 land regions from the sensitivity simulations with different terrestrial fluxes of 
MsTMIP. The boxes enclose the 25th, 50th, and 75th percentiles; the red dots represent the average values and the triangles represent the outliers.



Journal of Geophysical Research: Atmospheres

FU ET AL.

10.1029/2021JD034794

14 of 22

mean products in MsTMIP is made before the choice of the individual model flux when carrying out CO2 
simulations and the NEE fluxes from the TRIPLEX-GHG, CTEM, and SIB3 models are not recommended as 
the prior terrestrial flux for GEOS-Chem CO2 simulations if there are no further constraints and corrections 
in these models.

To estimate the uncertainties in the simulated CO2 concentrations among the 15 simulations, we calculated 
the similarity index of the simulated CO2 concentrations, the similarity index of the corresponding terres-
trial NEE fluxes of the MsTMIP ensemble and the sensitivity index of the uncertainty in the ensemble of 
model simulations for CO2 concentrations to the uncertainties in the corresponding terrestrial NEE fluxes 
(Figure 8). Low values of the similarity index of the simulated CO2 concentrations/terrestrial fluxes showed 

Figure 7.  (a) Interannual variations in the global mean surface CO2 concentrations (ppmv) derived from the sensitivity simulations with ensemble terrestrial 
fluxes product from MsTMIP. The values in parentheses represent the simulated linear trends of surface CO2 during the time period 2004–2010 (units: 
ppmv yr−1). (b–f) The observed interannual trends (red numbers) and simulated interannual trends from the simulations with individual terrestrial fluxes from 
MsTMIP at Mauna Loa (MLO), Southern Great Plains (SGP), Waliguan (WLG), Pallas-Sammaltunturi (PAL) and Cape Grim (CGO) sites (units: ppmv yr−1).
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large differences among the simulated CO2 concentration/terrestrial flux 
time series from the 15 simulations.

Figure 8 shows that the sensitivity of the simulated CO2 concentrations 
to the uncertainties in the terrestrial flux varied in different regions. The 
simulated CO2 concentrations were highly sensitive to the uncertainties 
in the terrestrial flux in the steppe zones or in desert–grassland biome 
transitional regions where vegetation is relatively sparse, although there 
was a relatively high similarity of the terrestrial flux among multi-models 
over these regions. The values of the sensitivity index in eastern China, 
the eastern USA and many parts of Europe were relatively low compared 
with the biome transition regions, indicating that the uncertainties in the 
terrestrial flux had a relatively small effect on the simulated CO2 concen-
trations. Despite this, there was a relatively strong sensitivity in parts of 
southeastern China and the eastern USA, where there are major areas 
broadleaf vegetation, suggesting the important effects of terrestrial flux 
uncertainties on the simulation of CO2 at high CO2 concentrations.

To quantify the response of the daily mean CO2 concentrations to varia-
tions in terrestrial fluxes, we removed the long-term trends and month-
ly variations of CO2 concentrations during the study period. Figure S4 
shows the detrended and deseasonalized daily mean CO2 concentration 
averaged over three study regions during the time period 2004–2010 
from simulations S_ENM and S_EOM. The variations in the daily mean 
CO2 concentration from simulation S_ENM were mostly consistent with 
those from simulation S_EOM, with changes averaged over China, the 
USA and Europe in the range −2.5 to +3.0 ppmv. Such variations in the 
daily mean CO2 concentration are caused by changes in the CO2 sources 
and sinks on a daily scale, which are ultimately affected by atmospheric 
transport. Among the three regions, the fluctuation in the daily mean CO2 
concentrations was a little larger in the USA than in China and Europe.

We calculated the sub-annual anomalies in the daily CO2 concentrations 
relative to the mean fluctuation in CO2 derived from the S_ENM simula-
tion (Figure 9). Large differences in the daily CO2 anomalies are expected 
as a result of the spread in the prior terrestrial fluxes. The interquartile 
range of the daily CO2 anomalies was within the range −1.0 to +1.0 ppmv 
and the median value was about ±0.5 ppmv for China, the USA and Eu-
rope. These anomalies induced by the spread of the terrestrial fluxes were 
significant when compared with the observed natural atmospheric CO2 
variabilities (about 1–3 ppmv) driven by climatic variability (e.g., the El 
Niño Southern Oscillation) (Zeng et al.,  2020), reflecting the inescapa-
ble contribution of the uncertainties in the terrestrial flux to current CO2 
simulations.

The impacts of the uncertainties in the terrestrial flux can be further un-
derstood through an examination of the simulated CO2 concentrations 

in the diurnal cycle (Figure 10). Figure 10 shows that the variations in the hourly CO2 concentrations have 
distinct characteristics in different regions, mostly influenced by the diurnal variation in CO2 emissions and 
the biosphere flux. Except for a few outliers, the magnitude of change in the sub-daily CO2 concentrations 
was within the range 4–6 ppmv (standard deviation) for China, the USA and Europe. Our results quantita-
tively demonstrate the significant impacts of accurate estimates of the terrestrial flux on annual and sub-an-
nual modeling of CO2 variations. One implication of this work is the urgent need to enhance the reliability 
of the prior terrestrial flux in the CTMs, which are the basis of atmospheric CO2 forward simulations and 
inverse modeling of CO2 fluxes (Philip et al., 2019).

Figure 8.  (a) Similarity index of the annual mean surface CO2 
concentration. (b) Similarity index of terrestrial biospheric flux (net 
ecosystem exchange) for the time period 2004–2010. (c) Sensitivity index of 
the sensitivity of the annual mean CO2 concentration to the uncertainties 
in the terrestrial biospheric flux.
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Figure 9.  Deviations in the regional surface daily mean CO2 concentrations (ppmv) between the simulations with the individual net ecosystem exchange of 15 
MsTMIP models and simulations with the ensemble mean net ecosystem exchange for (a) China, (b) the USA and (c) the EU. The green, black and orange lines 
represent the 25th, 50th, and 75th percentiles. The shading between the blue (maximum deviation) and the red (minimum deviation) line represents the range 
of deviation of the daily CO2 concentrations resulting from differences in terrestrial fluxes.



Journal of Geophysical Research: Atmospheres

FU ET AL.

10.1029/2021JD034794

17 of 22

4.  Discussion and Conclusions
We examined the impact of terrestrial fluxes on the simulated atmospheric concentrations of CO2 on differ-
ent timescales (yearly, monthly, daily, and hourly) through a series of global CTM (GEOS-Chem) simula-
tions with multiple prior terrestrial fluxes from the MsTMIP TBM. We determined the effects of uncertain-
ties in the terrestrial carbon flux on the forward simulation of CO2 concentrations. This work will help our 
understanding of the impact of different prior terrestrial carbon fluxes on atmospheric CO2 simulations and 
provide useful information for reconciling the differences between CO2 model simulations and observations.

The great diversity in the NEE predicted by current biosphere models from MsTMIP and for each TBM 
resulted in the deviation from the mean NEE flux averaged over the time period 2004–2010 ranging from 
−6% to 380% on the global scale. We used the results of CO2 forward simulations applying the unweighted 
(ENM) and weighted (EOM) ensemble mean terrestrial carbon fluxes from MsTMIP to evaluate the per-
formance of the models in simulating atmospheric CO2 concentrations. Comparison of the model column 
CO2 concentrations with GOSAT observations indicated that GEOS-Chem reproduces the spatiotemporal 
variations in atmospheric CO2 reasonably well by using the ensemble mean NEE fluxes as the prior terres-
trial flux. However, the simulated CO2 concentrations showed substantial seasonal and annual differences 
globally when applying different ensemble mean flux datasets from MsTMIP, reflecting the effects of the 
remaining uncertainties in different sources of ensemble terrestrial flux data based on different optimized 
approaches. For a further quantitative assessment, monthly simulated surface CO2 concentrations with 
different prior terrestrial fluxes were compared with surface measurements at 38 sites around the world. 
The results showed that the simulations with ENM and EOM fluxes had the best performance compared 
with the observations at all sites. We also found large differences among the simulated interannual trends 
of surface CO2 concentrations when using different terrestrial fluxes as prior estimates.

The results of the sensitivity experiments showed that the spread of terrestrial fluxes can cause a simulated 
CO2 concentration amplitude of 6.0–8.0 ppmv on annual timescales. The simulated trend of atmospheric 

Figure 10.  Boxplots of the simulated regional mean hourly CO2 concentration averaged over the time period 2004–2010 for (a) China, (b) the USA, and (c) the 
EU. (d) Variations in the regional mean hourly CO2 concentrations from the S_ENM and S_EOM simulations averaged over the time period 2004–2010. The 
boxes enclose the 25th, 50th, and 75th percentiles, the circles represent the average values and the diamonds represent the outliers.
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CO2 might also be significantly affected. The simulated daily mean CO2 concentration anomalies over the 
time period 2004–2010 may change within the range −2.0 to +2.0 ppmv as a result of the spread in the pri-
or terrestrial fluxes. The magnitude of the change in the sub-daily CO2 concentrations varied in the range 
4.0–6.0 ppmv on a regional scale as a result of the discrepancies among prior terrestrial fluxes.

This work implies that the uncertainties among current estimates of the terrestrial flux are important in CO2 
simulations and that CO2 simulations on different timescales are closely related to the choice of the prior 
terrestrial flux. There are some sources of uncertainty in this study. The uncertainties associated with other 
sources and sinks, such as anthropogenic emissions, emissions from biomass burning and ocean exchange, 
were not taken into account, which may affect the simulation of atmospheric CO2 concentrations. Some 
studies have assessed anthropogenic CO2 emissions and uncertainties as prior information for modeling 
and data assimilation on regional to global scales (Choulga et al., 2020; Han et al., 2020). Some studies have 
suggested that the variability among transport models may be a large source of uncertainties in forward and 
inverse modeling of the CO2 flux of biospheres (e.g., Basu et al., 2018; Schuh et al., 2019), indicating that 
the impact of prior terrestrial fluxes on CO2 simulations found here needs further examination using model 
ensembles. The impact of the initial conditions of the model on the simulation of atmospheric CO2 remains 
unclear and should be investigated further.

Accurate estimates of terrestrial carbon sinks in particular regions could be important because anthropo-
genic carbon emissions are expected to decrease in the future, especially in regions where the terrestrial 
carbon flux is still less constrained by observations. Many studies have tried to provide optimized estimates 
of terrestrial carbon fluxes (D. F. Baker et al., 2010; Chevallier et al., 2005; Gurney et al., 2003) and J. Liu 
et al. (2017) tried to quantify the response of tropical terrestrial carbon fluxes to the El Niño Southern Os-
cillation by the assimilation of multiple chemical species. Crowell et al. (2019) estimated surface CO2 fluxes 
from multiple inversion systems in the Intercomparison Project ensemble model framework using OCO-2 
observations. Philip et al. (2019) investigated the effects of multiple sources of a prior terrestrial CO2 flux on 
inversion modeling of terrestrial flux estimates.

All these studies have greatly improved our understanding of the estimates of terrestrial carbon sources and 
sinks. However, our study is important because the effects of uncertainties in the terrestrial carbon flux on 
the forward simulation of CO2 concentrations, quantitatively obtained in this work, may help our under-
standing of the impact of different prior terrestrial carbon fluxes on atmospheric CO2 simulations and may 
be useful in reconciling the differences between CO2 simulations and observations.

Data Availability Statement
Carbon Monitoring System: The modeled Net Ecosystem Exchange at 3-hourly time steps over 2004–
2010 from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is availa-
ble at http://dx.doi.org/10.3334/ORNLDAAC/1315. CarbonTracker optimized terrestrial flux (CT2016) 
at three-hourly resolution is publicly available at https://gml.noaa.gov/aftp/products/carbontracker/co2/
CT2016/fluxes/three-hourly/. GOSAT XCO2 retrieval (ACOS GOSAT/TANSO-FTS Level 2 bias-corrected 
XCO2, ACOS_L2_Lite_FP V7.3) is obtained from https://disc.gsfc.nasa.gov/datacollection/ACOS_L2_Lite_
FP_7.3.html. The in situ monthly CO2 flask observations from Atmospheric Carbon Dioxide Dry Air Mole 
Fractions from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network are download-
ed from https://gml.noaa.gov/aftp/data/trace_gases/co2/flask/surface/. Model results can be accessed at 
https://zenodo.org/record/5081676#.YOarhnJ61oU.
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