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Abstract Particulate nitrate is a major component of fine particulate matter (PM, ;). Its formation may be
varyingly sensitive to emissions of ammonia (NH,), nitrogen oxides (NO, = NO + NO,), and volatile organic
compounds (VOCs), depending on local conditions. Diagnosing these sensitivities is critical for successful air
quality management. Here, we show that satellite measurements of tropospheric NH; and NO, columns can

be used as a quick indicator of the dominant sensitivity regime through the NH,/NO, column ratio together
with the NO, column. We demonstrate the effectiveness of this indicator with the GEOS-Chem chemical
transport model and define thresholds to separate the different sensitivity regimes. Applying the method to
wintertime IASI and OMI observations in East Asia reveals that surface nitrate is dominantly VOC-sensitive in
the southern North China Plain (NCP), NO,-sensitive in most of the East China Plain, and NH;-sensitive in the
northern NCP, southern China, and Korea.

Plain Language Summary We present a novel application of satellite remote sensing to better
understand the causes of particulate nitrate pollution. Particulate nitrate is a major air pollutant throughout the
urbanized world. It is produced by atmospheric oxidation of emitted nitrogen oxides (NO,) but may be more
sensitive to emissions of ammonia (NH,) or volatile organic compounds (VOCs). Understanding which of NH,,
NO,, or VOC emissions is most important in driving nitrate formation is critical for air quality management.
We show that satellite measurements of the NH,/NO, column ratio along with NO, columns is an effective
indicator to determine the dominant sensitivity regime (NH3;—, NOy—, or VOC — sensitive). We develop this
approach using an atmospheric chemistry model and apply it to wintertime satellite observations in East Asia.
The approach should be applicable to other continents, seasons, and a broader range of satellite instruments,
providing valuable insights for particulate nitrate reduction strategies.

1. Introduction

Particulate nitrate (pNO, ) is a major component of fine particulate matter (PM, ;) throughout the urbanized world
and particularly in winter. It drives PM,  pollution events in East Asia (Li et al., 2018; H. Kim et al., 2020; Kim
etal., 2022; Tian et al., 2019; Q. Xu et al., 2019), North America (Franchin et al., 2018; Womack et al., 2019), and
Europe (Bressi et al., 2021). It is becoming relatively more important as other PM, 5 components have decreased
in response to emission controls (Attwood et al., 2014; Zhai et al., 2019), but pNO, ™ has not (Leung et al., 2020;
Lietal., 2019; Zhai et al., 2023; Zhou et al., 2022). In eastern China, wintertime pNO,~ concentrations have been
flat over the past decade despite a 30% decrease in NO, emissions (Chuang et al., 2021; Fu et al., 2020; Zhai
etal., 2021). pNO,™ has become a key target for further improving PM, 5 air quality.
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pNO; ™ is produced by the oxidation of nitrogen oxide radicals (NO, = NO + NO,) to nitric acid (HNO,). HNO,
partitions into the aerosol as pNO,~ depending on aerosol pH, water content, and temperature (Guo et al., 2018;
Nenes et al., 2020). The presence of alkalinity, mostly from ammonia (NH,), raises aerosol pH to favor pNO,~
formation. The resulting pNO, ™~ is mainly in the fine PM, ; aerosol mode. NO, in urban areas mainly comes from
fuel combustion. NH, originates from agricultural activities including fertilizer use and livestock manure, but
vehicle emissions could also be important in urban areas (Farren et al., 2020; Y. Wang et al., 2023). Oxidation
of NO, to HNO, is by the hydroxyl radical (OH) during the daytime and by ozone (O,) at night, both of which
depend on the levels of NO, and volatile organic compounds (VOCs). VOCs originate from combustion, indus-
trial and domestic chemical products, vegetation, and open fires (Shen et al., 2019).

pNO,~ concentrations are generally highest in winter when low temperatures favor partitioning into the aero-
sol. Formation of pNO,™ may then be dominantly sensitive to the gas in shortest supply, either NH; or HNO,
(Nenes et al., 2020), while the NO, to HNO, conversion is limited by either the abundance of NO, or VOCs
(Kleinman, 1994; Womack et al., 2019). Other factors can further complicate these relationships of pNO,~ to
emitted precursors, including competing deposition between HNO, and pNO,~ (Zhai et al., 2021), other sources
of aerosol alkalinity (Guo et al., 2018), and NO, oxidation to organic nitrates (Romer Present et al., 2020). Coarse
pNO;~ can also form from uptake of HNO, by alkaline soil dust and sea salt in dusty and coastal areas (Zhai
et al., 2023). The sensitivity of pNO,~ concentrations to NH;, NO,, and VOC emissions is thus nonlinear and
complex, requiring different control strategies under different conditions.

Two approaches have been used to determine the sensitivity of pNO;™ to emissions. Field studies measure aero-
sols and gases, allowing for the calculation of diagnostic indicators (Petetin et al., 2016; Z. Xu et al., 2019), or
providing input to thermodynamic models for sensitivity tests (Franchin et al., 2018; Guo et al., 2018). They
require substantial experimental resources, and the results are only locally applicable. Chemical transport models
diagnose the sensitivity of pNO,~ to emissions through simulations with perturbed emissions (Fu et al., 2020; Li
etal., 2021; Zhai et al., 2021). They require substantial computational resources, and emission errors in the model
may lead to misdiagnosis.

Here we present a new satellite-based method to diagnose locally the sensitivities of fine pNO,~ formation to NH,,
NO,, and VOC emissions. We use for this purpose satellite measurements of the tropospheric column concentra-
tions of NH, (Q;) and NO, (£2,) and diagnose the sensitivity from the Q;,/€2\, ratio. Our approach paral-
lels the common use of the space-based formaldehyde HCHO/NO, column ratio as an indicator for whether O,
formation is NO,- or VOC-limited (Duncan et al., 2010; Jin et al., 2020; Martin et al., 2004). It offers a quick diag-
nostic tool for air quality management in their design of pNO, ™ control strategies. NH, measurements from space
have been available from the IASI instrument since 2007 (Clarisse et al., 2009), and from the CrIS instrument
since 2012 (Shephard and Cady-Pereira, 2015). NO, measurements from space began with the GOME instrument
in 1995 (Martin et al., 2002) and have continued with the OMI instrument since 2005 (Lamsal et al., 2021), the
TROPOMI instrument since 2017 (van Geffen et al., 2020), and the GEMS geostationary instrument since 2020
(J. Kim et al., 2020). We demonstrate the method for East Asia in winter, using observations from OMI and IASI.

2. Theoretical Basis: Q,,, and Q,,, as Indicators of Nitrate Formation Regime

The main pathway for fine pNO,~ formation is the joint condensation of NH, and HNO,, governed by a thermody-
namic equilibrium constant K dependent on temperature and relative humidity (RH) (Stelson and Seinfeld, 1982):

K = pnuy X pano;, (1)

where p is partial pressure. At low wintertime temperatures and/or high RH, the low value of K leads to titration
where pNO,~ formation is mainly sensitive to the gas in shortest supply, either NH, or HNO, At warmer tempera-
tures, NH, and HNO, may coexist in the gas phase but the dominant sensitivity is still to the gas in shortest supply
(Nenes et al., 2020). Scavenging of NH, by acid sulfate may totally suppress pNO;~ formation when sulfate is in
excess of NH, (Ansari and Pandis, 1998). Dust and sea salt particles can also drive HNO, into the aerosol through
added alkalinity or chloride displacement (Alexander et al., 2005; Fairlie et al., 2010), though this tends to be in
coarser particles than PM, ;. Henceforth we will refer to pNO, ™ as the fine PM, 5 component of nitrate.

Several frameworks exist for determining the dominant sensitivities in thermodynamic formation of pNO;™.
Nenes et al. (2020) pointed out that aerosol pH is the key variable affecting the dominant pNO,~ sensitivity to
NH, or HNO,, and the pH thresholds for distinguishing between the regimes depend on temperature and aerosol
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liquid water content. In a more simplified framework, the molar ratio R of free ammonia after sulfate neutrali-
zation (NH; + NH4* — 2 x SO4%7) to total nitrate (NO;T = HNO; + pNO; ") is measured in field campaigns to
diagnose the sensitivities (Petetin et al., 2016; Z. Xu et al., 2019). The effect of pH is implicitly considered within
this simplified indicator through the role of NH, (Guo et al., 2017, 2018). Generally, R > 1 indicates dominant
sensitivity to HNO,, while R < 1 indicates dominant sensitivity to NH,. The gas-phase NH,/HNO; ratio can also
serve as an indicator but its threshold for transition between regimes may depart from unity when NO5" is heavily
partitioned into the aerosol and the resulting HNO, concentration is very low. A dominant sensitivity to HNO,
would be expected to translate into a dominant sensitivity to NO, emissions, but the conversion of NO, to HNO,
may in fact be limited by the supply of VOCs under VOC-limited conditions for oxidant (OH and O,) formation.
Womack et al. (2019) point out that this may cause pNO,~ formation to be most sensitive to VOC emissions under
strongly VOC-limited conditions as frequently occur in urban environments in winter.

Satellites measure tropospheric columns of NH; (,,;) and NO, (). It follows from the above discussion
that the measured Q,;;,/Q\,, ratio should give an indicator of the sensitivity of pNO,~ formation to precursor
emissions, in a manner useful to air quality management. Application of this indicator may be complicated by
the vertical gradients of NH; and NO, concentrations, by the presence of sulfate, and by the limiting regime
for oxidation of NO, to HNO,. A model analysis can evaluate these complications, and this is discussed in the
next section. Satellite observations of HCHO columns () could in principle distinguish between NO,- and
VOC-limited oxidant regimes through consideration of the €2y;;,,/Qy, ratio, but in practice wintertime Q0
concentrations are near or below the detection limit (Zhu et al., 2014, 2017). Very high Q,, values can be used
instead as an indicator of VOC-limited conditions (Sillman, 1995).

3. Evaluation in the GEOS-Chem Model Environment

To analyze the value of the Q;,/€2, Tatio as an indicator for the sensitivity of pNO;~ formation to emissions,
we conduct sensitivity simulations with the GEOS-Chem global atmospheric chemistry model. We use GEOS-
Chem version 13.4.1 (DOI: https://zenodo.org/record/6564702) with options and modifications described below.
The simulations are driven by MERRA-2 meteorology and are conducted at a nested resolution of 0.5° x 0.625°
for East Asia (90°-145°E, 10°-55°N) over the 1-31 January 2017 period, with boundary conditions updated
every 3 hr from a 4° X 5° global simulation. The simulation is spun up for 6 months for initialization.

GEOS-Chem includes detailed oxidant-aerosol chemistry (Wang et al., 2021). Thermodynamic pNO,~ formation
from NH,—HNO,—H,SO,—HCI mixtures is calculated by ISORROPIA II (Fountoukis and Nenes, 2007) and
defines in the model the PM, ; component of pNO; ™. The model also includes uptake of HNO, by coarse sea salt
aerosol (Wang et al., 2021) but this does not contribute to PM, 5 and is not considered here in pNO, ™ accounting.
Uptake of HNO, by dust is included in GEOS-Chem as an option (Fairlie et al., 2010; Zhai et al., 2023) but is not
used in our simulation. We use the wet deposition scheme of Luo et al. (2020), which is an option in GEOS-Chem
and has proven to be important for successful simulation of pNO,~ (Luo et al., 2019, 2020; Zhai et al., 2021).
We also add to our simulation the photolysis of aerosol nitrate, which improves the simulation of tropospheric
NO, column observations in GEOS-Chem though the effect is small in winter (Dang, Jacob, Shah, et al., 2023;
Shah et al., 2023). Global anthropogenic emissions are from the Community Emissions Data System (CEDS)
(McDuffie et al., 2020) superseded by the MEIC inventory for China (Zheng et al., 2018) and the KORUSv5
inventory for South Korea. Other emissions settings are as described in Dang, Jacob, Shah, et al. (2023).

Figure 1 compares simulated pNO,~ concentrations from our simulation with measurements from observational
networks and field studies in China and Korea in winter 2016-2017. Table S1 in Supporting Information S1
gives site details. Most observations are centered on January 2017, but some are for December 2016, and some
are for the whole winter (DJF). All are compared to GEOS-Chem in January 2017. GEOS-Chem simulates the
ensemble observations with a correlation coefficient » = 0.82, a reduced-major-axis (RMA) regression slope of
0.98 +0.15, and a normalized mean bias (NMB) of 9%. There is one site in Xi'an where observed pNO,~ is anom-
alously high (averaging 36 pg m~3) and this is not captured by the model. This site is excluded from the statistics
above. Additionally, GEOS-Chem has been found to reproduce daily pNO,™~ observations well at a Beijing site
during the winters of 2014-2019 (Zhai et al., 2021). Overall, the successful simulation of pNO,~ variability
provides support for using the model to study the sensitivity of pNO,™ to precursor emissions in East Asia.

We diagnose the local pNO, ™ sensitivity to NH,, NO,, and VOC emissions in the model by conducting sensitivity
simulations with individual emissions reduced by 20%. The reduction is applied to all sources (anthropogenic
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PM, s nitrate concentrations in East Asia, January 2017
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Figure 1. Surface PM,  nitrate concentrations in China and Korea. Mean GEOS-Chem model concentrations for

January 2017 are compared to mean observations at a number of sites (Table S1 in Supporting Information S1) over
December-February 2017. Panel (a) shows the spatial distribution, with observations as circles and GEOS-Chem as solid
contours. Panel (b) shows the correlation between model and observations at individual sites including correlation coefficient
(r), normalized mean bias (NMB), reduced-major-axis (RMA) regression line and slope (+95% confidence interval), and 1:1
dashed line. The statistics excludes the Xi'an site where observed pNO,~ is anomalously high. Site details are in Table S1 in
Supporting Information S1.

and natural) but the sources in winter are mainly anthropogenic. The local model sensitivity S; of pNO,~ to the
emission E; of species i for individual 0.5° x 0.625° grid cells is calculated from the relative model differences
(A) between the sensitivity and base simulations as:

Al NO,~
5, = A1oelPNOy | @
Alog E;

where i refers to NH;, NO,, or VOC, and [pNO, ] refers to monthly mean concentrations in surface air. A sensi-
tivity S; = 1 indicates that a 20% reduction in emissions of precursor i results in a corresponding 20% decrease in
surface pNO,™ concentrations. By comparing Syy;, Sxo a0d Syoc, We determine whether pNO, ™ in a model grid
cell is most NH,—, NO,-, or VOC-sensitive.

Figure 2 shows the model relationship between the dominant pNO, ™ sensitivity and the observable surface and
satellite indicators discussed in Section 2. Individual circles show the dominant sensitivities S, for monthly
mean surface pNO;~ concentrations in individual grid cells. We use the NH,/HNO, gas-phase molar ratio
as surface indicator instead of R because it is better connected to the Q;;,/Qy, satellite indicator. We use
NO, concentration (surface or column) as an indicator of VOC-limited conditions for NO, oxidation because
Qycno 18 generally not observable from space in winter. Surface indicators are 24-hr averages, while columns
are sampled at 9-10 local time (LT) for NH, to emulate IAST and at 13—14 LT for NO, to emulate OMI. Aver-
aging kernels are applied to the model NO, vertical profiles following Cooper et al. (2020) to emulate tropo-
spheric NO, columns from version 4 of the NASA OMI NO, level 2 product (OMNO?2) (Lamsal et al., 2021).
We restrict our attention to grid cells with Qq, > 2.5 X 105 molec cm~ to remove remote regions (as
shown by the satellite observations in Figure 3b) where diagnosing sensitivity to local emissions would be
inappropriate.

Results in Figure 2 show that the indicators are successful at diagnosing the dominant pNO,~ sensitivities to
precursor emissions. Approximately 90% of the grid cells show a dominant sensitivity S, that is distinctly greater
than the other two sensitivities (Si/Sj > 1.1). Black dashed lines delineate the transitions between sensitivity
regimes. The slanted lines are derived from reduced-major-axis (RMA) linear regressions for grid cells with
sensitivity ratios 0.95 < S/S; < 1.05. Sensitivities Sy;;; and Sye, can approach unity within the corresponding
regimes. Sy can reach 0.5 in the VOC-sensitive regime.
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Indicators of PM, s nitrate sensitivity to precursors
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Figure 2. Regimes for the sensitivity of surface pNO,~ concentrations to NH;, NO,, and VOC emissions. Results show

the dominant sensitivities S; = Alog[pNO;~]/AlogE; for monthly mean concentrations in January 2017 in individual

0.5° x 0.625° GEOS-Chem model grid cells in East Asia (domain of Figure 1(a)). A sensitivity S, = 1 indicates proportional
response of the pNO; ™~ concentration to change in the precursor emission E,. The dominant sensitivities are plotted in a state
space of indicators of the sensitivity regime as observable from surface or satellite measurements. Surface indicators (panel
(a)) are the gas-phase NH,/HNO, molar ratio and the NO, concentration. Satellite indicators (panel (b)) are the Q;;5/2yq,
column ratio and the Qy, column. Q,,, is sampled at 9-10 local time (LT) to emulate the IAST instrument, and Q,, is
sampled at 13—-14 LT to emulate the OMI instrument. Dashed lines separate the different regimes as diagnosed by S,. The
slanted lines are derived from reduced-major-axis (RMA) linear regression for grid cells with sensitivity ratios 0.95 < §/

S. < 1.05. The corresponding equations are given in the text. Ocean and remote grid cells with Qy, < 2.5 X 10’ molec cm™
(see Figure 3b) are excluded from the plot.

2

Examining first the surface indicators, we find that NH,-sensitive conditions are associated with NH,/
HNO, < 4 mol mol~! at low NO,, with the threshold increasing at higher NO,. The threshold is larger than
the value of 1 for the R ratio in Section 2. This is expected because the gas-phase HNO, concentration can be
extremely low in winter, so that competing deposition between gas-phase HNO, and pNO, ™ increases sensitiv-
ity to NH; even when R > 1 (Zhai et al., 2021). Outside of the NH,-sensitive regime, whether NO, or VOCs is
the controlling precursor is well delineated by NO, levels. For NO, < 12 ppb the sensitivity is mostly to NO,
emissions (NO,-limited regime) but it decreases as NO, increases and VOCs then become more important. For
NO, > 12 ppb the sensitivity is mostly to VOCs (strongly VOC-limited regime). NH, sensitivity can also be
dominant under these conditions because the conversion efficiency of NO, to HNO, is low. The sensitivity
regimes separated by the black dashed lines in Figure 2a are thus diagnosed from the gas-phase NH,/HNO, and
NO, surface indicator concentrations as

_NHs] <4 (INO,] < 1.3 ppb)
NH; — sensitive: [HNO;]
3 Vel § [NH,] S (3a)
log [HN—O3] < 0.49 + 1.02 x log [NO,] (INO,] > 1.3 ppb)
hus (INO,] < 1.3 ppb)
NO, — sensitive: < L [ON31]{ 1 , (3b)
log ——=— > 0.49 + 1.02 x 1 1. 12
og [HNO, ] > 0.49 4+ 1.02 x log [NO, ] ( 3ppb < [NO,] < ppb)
VOC - sensitive: log & > 0.49 + 1.02 x log[NO,] (INOz] > 12ppb). (3¢)

[HNOs]

Figure 2b shows that the satellite indicators are similarly effective for diagnosing sensitivity regimes. For a
given Q,,,/€2, ratio, higher €, levels indicate a lower efficiency in converting NO, to HNO,, so that NH,
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is more likely to be in excess. This explains why the threshold Q,,/Qy, ratio for transition from NH,-sensitive
to NO,-sensitive conditions decreases with increasing €2y, while by contrast the threshold NH,/HNO; ratio
in surface observations increases with increasing NO,. We also see from Figure 2 that ., can serve as a
good satellite indicator for the onset of VOC-sensitive conditions. The sensitivity regimes separated by the black
dashed lines in Figure 2b are thus diagnosed from the Q,;, and €, columns as

" QN
NH3 — sensitive: log < 14.09 — 0.90 x log Qo,, (4a)
NO,
. Qnw, 16 -
NOy — sensitive: log > 14.09 — 0.90 x log Qno, (2xo, < 2% 10°molec cm™?), (4b)
NO,
.. QNH3 16 -2
VOC — sensitive: log 3 > 14.09 — 0.90 x log Qno, (2n0, > 2 X 10 moleccm™). (4¢)
NO,

4. Application to Satellite Observations

We now illustrate the application of the method to satellite observations of Q,,, from IASI and Q,, from OMI,
using Equation 4 to diagnose the sensitivity regimes in the observations. The IASI instrument measures Q;, by
observing the infrared radiation emitted by the Earth's surface and the atmosphere. It provides global coverage
twice a day, at 9:30 local solar time (LT) and 21:30 LT, with a nadir pixel resolution of 12 X 12 km? (Van Damme
etal., 2014). The OMI instrument measures €2, by observing solar backscatter, providing daily global coverage
at 13:30 LT with a nadir pixel resolution of 13 x 24 km?2. Here, we use version 3 of the reanalyzed level 2 prod-
uct of NH; columns (ANNI-NH,-v3R) (Van Damme et al., 2021) and version 4 of the NASA OMI NO, level 2
product (OMNO?2) (Lamsal et al., 2021) during the winter (DJF) of 2017. Both products have been extensively
validated including for IASI v3 (Guo et al., 2021; Vohra et al., 2021; Wang et al., 2022; R. Wang et al., 2023) and
OMNO?2 version 4 (Lamsal et al., 2021). Both data sets have been used effectively in previous studies for hotspot
detection (Clarisse et al., 2019; Mebust et al., 2011) and emission tracking (Chen et al., 2021; Cooper et al., 2022;
Evangeliou et al., 2021; Luo et al., 2022; Marais et al., 2021; Shah et al., 2020).

We only use morning overpasses (9:30 LT) for €2;; to minimize the time separation with OMI afternoon obser-
vations. We filter the IAST ,,, data to remove pixels with cloud fraction >0.1. For OMI Q,, data, we filter
out pixels with cloud fraction >0.3, surface reflectivity >0.3, solar zenith angle >75°, viewing zenith angle
>65°, and those affected by the so-called row anomaly. To reduce noise, both data sets are gridded and averaged
to obtain wintertime mean columns at 0.5° X 0.625° resolution, and grid cells with fewer than 30 successful
retrievals for either Q,;; or Q, are excluded. Additional filtering is applied to the gridded wintertime means
to remove negative values. Uncertainties in grid-cell averages for both data sets are calculated using the method
described by Eskes et al. (2003), with a 0.15 error correlation applied to retrievals falling within the same grid cell
(Boersma et al., 2018). The calculated uncertainties range from 14% to 85% (0.1-0.9 quantiles) for IAST Q,,; and
9% to 26% for OMI ., over the studied region (Figure 3) during the winter of 2017.

Figures 3a and 3b show the IASI Q;;, and OMI Q,, during the winter of 2017. IASI observes high NH, in
the East China Plain where it originates from livestock waste, fertilizer use, and vehicles (Zhang et al., 2018).
OMI observes high NO, in the densely populated East China Plain and the Seoul metropolitan area (SMA)
in South Korea. These satellite observations of €, and €, are roughly consistent with the GEOS-Chem
simulations (Figures S1 and S2 in Supporting Information S1) but that is not a requirement for application
of our method.

Figure 3d shows the dominant local surface pNO,™ sensitivities to precursor emissions determined from the
observed €;;1/Q2yq, ratio (Figure 3c) and €, (Figure 3b) by applying Equation 4. We assume that the
thresholds obtained from Equation 4 in January can represent the entirety of winter (DJF), considering that
the effect of meteorological variability over those 3 months is small compared to the range of conditions within
the spatial domain sampled by the model. Robustness tests are conducted for each grid cell by applying 10,000
Monte Carlo samplings for both IASI ,,; and OMI Q,,, data, with grid means and uncertainties as inputs
to describe the distributions. Grid cells exhibiting a robust diagnosis with a 90% confidence level are marked
with black dots.
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Diagnosing pNOj3 sensitivity in East Asia, winter 2017
(a) IASI Qnp, (b) OMI Qno,
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Figure 3. Sensitivity of surface particulate nitrate (p)NO,~) concentrations in East Asia to precursor emissions as diagnosed
from mean satellite observations in winter (DJF) 2016-2017. Panels (a) and (b) show IASI observations of NH, columns
(Qp3) and OMI observations of tropospheric NO, columns (Q,,), filtered as described in the text. Panel (c) shows the
molar Q;,/Qy, ratio computed from the seasonal mean columns. Panel (d) presents the dominant sensitivity regimes of
pNO; ™ diagnosed from the satellite observations using Equation 4. White areas indicate either lack of data or remote areas
(Qy0s < 2.5 x 10" molec cm~2). Black dots indicate grid cells with robust diagnoses at a 90% confidence level, determined
through 10,000 Monte Carlo samplings for both Q;; and Q..

We find varying regimes of pNO, ™ sensitivity across China and Korea. VOC-sensitive conditions are observed in
the southern North China Plain (NCP), characterized by a €2;;,/Qy, molar ratio exceeding 0.5 and Q,, exceed-
ing 2 x 10'6 molec cm™2. In this region, pNO,~ formation is NH,-saturated, and the most effective approach to
decrease pNO;™ is to control VOC emissions. In other areas of the East China Plain including Henan and Hubei
provinces, and in the Fenwei Plain, the satellite observations indicate NO,-sensitive conditions. In these areas,
NH, levels are high and NO, concentrations are not as high as in the southern NCP, so controlling NO, emissions
is the most effective way for decreasing pNO;~. NH,-sensitive conditions are observed in the northern NCP
(including Beijing), southern China, and Korea, characterized by relatively low €./, ratios.

Previous field studies found that pNO,~ formation at sites in eastern China are more sensitive to total nitrate than
to NH, due to NH, being present in excess (Guo et al., 2018; Lin et al., 2020; Song et al., 2019; Zang et al., 2022).
However, difference in the lifetimes of HNO, and pNO; ™~ against deposition can drive a dominant sensitivity to
NH, even when NH,; is present in excess (Nenes et al., 2021; Zhai et al., 2021), as reflected in our GEOS-Chem
simulation where the NH,-sensitive regime extends to NH,/HNO, gas-phase ratios in excess of unity (Figure 2a).
Our findings are consistent with previous model studies, where wintertime pNO, ™~ concentrations are found to be
most sensitive to NH; and/or VOC controls in the NCP (Fu et al., 2020; Li et al., 2021; Zhai et al., 2021) and to
NH, controls in the Yangtze River Delta (Li et al., 2021) and southern China (Lu et al., 2021).

Our demonstration of this satellite-based method for diagnosing the sensitivity of pNO,~ to emissions has focused
on wintertime East Asia, where pNO,~ is particularly high. One might expect the same method and similar
thresholds to be applicable to other polluted regions and seasons, but this would need to be further investigated
with model simulations and evaluated with local field studies.

In summary, we have shown that NH; and NO, measurements from space can be used as a NH,/NO, column
ratio indicator to diagnose the sensitivity of PM,  nitrate to emissions in support of pollution management. Our
method could be applied to other current satellite instruments including TROPOMI for NO, and CrIS for NH,.
Future geostationary satellites including Sentinel-4 and IRS for Europe (Gulde et al., 2017) and GeoXO for the
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United States (Schmit et al., 2022) will have NO, and NH, measurements from the same platform. The Nitrosat
satellite mission presently under consideration by the European Space Agency will simultaneously observe NH,
and NO, at 500-m resolution, greatly increasing the frequency of clear-sky scenes (Coheur et al., 2021). There
is thus considerable potential for application of our method to the next generation of satellite observations. This
new satellite-based method would enable us to gain a global perspective on pNO, ™ sensitivity and monitor regime
changes.
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The IASI reanalyzed daily NH, data are publicly available from Clarisse et al. (2022). The OMNO2 product,
created by the National Aeronautics and Space Administration (NASA), is available at Krotkov et al. (2019). The
PM, ; nitrate observation data that are collected in this study can be accessed via Dang, Jacob, Zhai, et al. (2023).
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