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Global climate response to anthropogenic aerosol indirect effects:
Present day and year 2100
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[1] Aerosol indirect effects (AIE) are a principal source of uncertainty in future climate
predictions. The present study investigates the equilibrium response of the climate system
to present-day and future AIE using the general circulation model (GCM), Goddard
Institute for Space Studies (GISS) III. A diagnostic formulation correlating cloud droplet
number concentration (N,) with concentrations of aerosol soluble ions is developed as a
basis for the calculation. Explicit dependence on N, is introduced in the treatments of
liquid-phase stratiform clouds in GISS III. The model is able to reproduce the general
patterns of present-day cloud frequency, droplet size, and radiative balance observed by
CloudSat, Moderate Resolution Imaging Spectroradiometer, and Earth Radiation Budget
Experiment. For perturbations of N, from preindustrial to present day, a net AIE forcing of
—1.67 W m 2 is estimated, with a global mean surface cooling of 1.12 K, precipitation
reduction of 3.36%, a southward shift of the Intertropical Convergence Zone, and a
hydrological sensitivity of +3.00% K. For estimated perturbations of N, from present day
to year 2100, a net AIE forcing of —0.58 W m 2, a surface cooling of 0.47 K, and a
decrease in precipitation of 1.7% are predicted. Sensitivity calculations show that the
assumption of a background minimum », value has more significant effects on AIE
forcing in the future than on that in present day. When AlE-related processes are included
in the GCM, a decrease in stratiform precipitation is predicted over future greenhouse gas
(GHG)-induced warming scenario, as opposed to the predicted increase when only GHG

and aerosol direct effects are considered.

Citation: Chen, W.-T., A. Nenes, H. Liao, P. J. Adams, J.-L. F. Li, and J. H. Seinfeld (2010), Global climate response to
anthropogenic aerosol indirect effects: Present day and year 2100, J. Geophys. Res., 115, D12207, doi:10.1029/2008JD011619.

1. Introduction

[2] Aecrosols alter the energy balance of the Earth-
atmosphere system directly by scattering and absorbing
sunlight (aerosol direct effect (ADE)), and indirectly by
affecting the reflectivity, lifetime, and precipitation forma-
tion of clouds. The so-called aerosol indirect effect (AIE),
the modification of cloud optical properties (cloud albedo

"Department of Environmental Science and Engineering, California
Institute of Technology, Pasadena, California, USA.

?Now at Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, California, USA.

3Schools of Earth and Atmospheric Sciences and Chemical and
Biomolecular Engineering, Georgia Institute of Technology, Atlanta,
Georgia, USA.

“LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing, China.

Departments of Civil and Environmental Engineering and Engineering
and Public Policy, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.

®Departments of Environmental Science and Engineering and Chemical
Engineering, California Institute of Technology, Pasadena, California,
USA.

Copyright 2010 by the American Geophysical Union.
0148-0227/10/2008JD011619

effect), structure, and precipitation (cloud lifetime effect) by
aerosols, is judged to be the most uncertain radiative forcing
in the climate system [Forster et al., 2007]. General circu-
lation models (GCMs) with explicit aerosol-cloud interac-
tions are the principal tool for estimating the radiative forcing
and climatic impacts of the AIE. Current GCM-based
estimation of AIE radiative forcing from preindustrial to
present day for the cloud albedo effect range from —0.22 to
—1.85 W m %, when changes in cloud lifetime and other
feedbacks (e.g., glaciation indirect effects and thermody-
namic effectsz) are included, the values vary from —0.29 to
—2.41 W m “ [Forster et al., 2007].

[3] Climatic impacts of the present-day AIE, relative to
preindustrial conditions, have been investigated in GCM
studies [Rotstayn et al., 2000; Williams et al., 2001;
Rotstayn and Lohmann, 2002; Kristjiansson et al., 2005;
Ming et al., 2005; Kirkevdg et al., 2008a, 2008b; Koch et
al., 2009]. In these studies the atmosphere is coupled to a
slab ocean with interactive sea surface temperature (SST)
and fixed heat transport. A qualitatively similar pattern in
climate responses was found in these studies: cooling at
Northern Hemisphere high latitudes and a southward dis-
placement of the Intertropical Convergence Zone (ITCZ).
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Figure 1. Schematic diagram for experimental design.

Amplified cooling at northern high latitudes associated with
sea ice and snow albedo feedbacks was identified by
Williams et al. [2001] and Kristjansson et al. [2005]. In
studies exploring the combined impacts of present-day
aerosol direct and indirect effects [Feichter et al., 2004;
Kristiansson et al., 2005; Takemura et al., 2005; Kirkevag et
al., 2008a, 2008b; Koch et al., 2009], a weakening of the
hydrological cycle over northern high latitudes and a similar
southward shift of ITCZ was diagnosed. Combining the
direct and indirect aerosol climatic effects with greenhouse
gas (GHG) forcing, Feichter et al. [2004] identified a sig-
nificant nonlinearity in the response of the hydrological
cycle using the ECHAM4 model with interactive sulfur
chemistry and primary carbonaceous aerosols, and online
cloud droplet activation. However, in a similar study using
the CCM-Oslo (based on the NCAR Community Climate
Model CCM3) with online sulfate and black carbon and
lookup tables for CCN activation, Kirkevdag et al. [2008a]
found the climatic responses to aerosols and GHG are
nearly additive.

[4] In the present work, climate responses to the AIE are
studied, with emphasis on changes in the hydrological cycle.
We address the following questions: (1) How is climate
affected by the anthropogenic perturbations of cloud droplet
number concentration (N.) alone from preindustrial to
present day (year 2000), and from present day to future
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(year 2100)? (2) How is future climate predicted to be
influenced by the combined perturbations of anthropogenic
GHG, aerosols, and N.?

[s] Here we use equilibrium climate simulations to
investigate the above questions. The simulations are per-
formed using the Goddard Institute for Space Studies
(GISS) Global Climate Middle Atmosphere Model III
(referred to as GISS III hereafter) coupled to a slab (Q-flux)
ocean model. Modifications are made to the formulations of
optical depth and autoconversion rates in liquid-phase
stratiform clouds in GISS III to introduce explicit depen-
dence on grid-by-grid offline N, fields. In each of the si-
mulations, specific levels of offline monthly averaged
aerosol mass concentrations and N, values are input, and the
atmospheric dynamics, hydrological cycle, and temperature
are allowed to respond accordingly. The corresponding
aerosol indirect radiative forcing is calculated, and changes
in cloud properties, temperature, precipitation, and circula-
tion between the equilibrium climates are diagnosed. Note
that the aerosol indirect effects on stratiform ice clouds and
convective clouds are not included in the present study.

[6] A key ingredient in representing the AIE in GCMs is
the relation of changes in aerosol amount and properties to
changes in N, and cloud droplet size distribution. In the
empirical diagnostic approach, N, is formulated as a func-
tion of aerosol mass or number concentration, based on
ambient data [e.g., Boucher and Lohmann, 1995; Ghan et
al., 1997; Menon et al., 2002; Dufresne et al., 2005; Ming
et al., 2005; Quaas and Boucher, 2005]. In the prognostic
approach, the cloud droplet distribution is predicted based
on cloud microphysics [e.g., Kristjansson et al., 2005;
Takemura et al., 2005; Lohmann et al., 2007]. While the
carliest studies of the AIE employed the empirical diag-
nostic approach, the tendency in recent work is to adopt a
prognostic microphysics approach to predict cloud droplet
properties online and interactively. In the present study, we
establish a new, physically based, computationally efficient
formulation to relate aerosols and cloud properties diag-
nostically, allowing for geographical and seasonal variations
of aerosol-cloud interactions.

[7] In section 2, a description of the diagnostic aerosol-
cloud formulation is provided, together with the derivations
of offline aerosol mass concentrations and offline N, values,
as well as the modifications to the cloud scheme in the GISS
III GCM. The associated forcing for perturbations of GHG
and aerosols direct and indirect effects is reported in section 3.
Experimental design of the equilibrium climate simulations
is outlined in section 4, with the results of the simulations
analyzed and discussed in section 5.

2. Descriptions of Global Models

[8] Three different global models were used in this study:
the Unified Model developed in the National Aeronautics
and Space Administration (NASA) project “Chemistry,
Aerosols, and Climate: Tropospheric Unified Simulation”
(termed the “CACTUS Unified Model” hereafter), the Two-
Moment Aerosol Sectional microphysics model within
Goddard Institute for Space Studies (GISS) GCM II' (GISS-
TOMAS hereafter), and the GISS III GCM. Table 1 sum-
marizes the characteristics of each model, its usage here, and
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Table 1. Global Models in This Study?®
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Model
o-Layers Top (hPa)

Horizontal

Model Resolution

Simulations Performed

Feature in This Study Reference

CACTUS unified 4° Lat by 5° Lon 9 10
model
GISS-TOMAS  4° Lat by 5° Lon 9 10
CCN
GISS I 4° Lat by 5° Lon 23 0.002

Fully coupled chemistry-aerosol-
climate simulations
Size-resolved aerosol and

Cloud scheme modified to include
first and second AIE

Derivation of offline
aerosol concentrations
Calculation of CCN
spectra for deriving N,.
aerosol correlations
Equilibrium climate
simulation

Liao et al. [2003, 2004] and
Liao and Seinfeld [2005]
Adams and Seinfeld,
[2002] and Pierce and
Adams [2006]

Rind et al. [2007]

concentrations

?AIE, Aerosol indirect effects; GISS, Goddard Institute for Space Studies; CCN, cloud condensation nuclei.

relevant references. Figure 1 is a flowchart of the simulations
in this study, and the steps in which each model is involved.
First, the CACTUS Unified Model is used, with fully coupled
simulations of tropospheric chemistry, aerosols, and cli-
mate, to calculate an annual cycle of monthly averaged
aerosol mass concentrations for preindustrial (PI, roughly
corresponding to the year 1800), year 2000 (20C), and year
2100 (21C). Next, grid-by-grid correlation formulations
between N, and aerosol soluble ions are developed using
GISS-TOMAS and the sectional cloud condensation nuclei
(CCN) activation parameterization of Nenes and Seinfeld
[2003] (hereafter NS) with the droplet growth kinetic mod-
ifications of Fountoukis and Nenes [2005] (hereafter FN).
With this formulation and the aerosol mass concentrations
from the CACTUS Unified Model, offline, monthly averaged
values of N, for PI, 20C, and 21C are calculated. Finally,
optical depth and autoconversion rates in the liquid-phase
stratiform cloud scheme of GISS III are adjusted to include
explicit dependence on N.. A set of equilibrium climate si-
mulations was carried out, each with specific levels of GHG,
offline aerosol mass, and offline N... The differences between
the equilibrium simulations were analyzed to identify the
impacts of AIE on the hydrological cycle and future climate
changes.

2.1. CACTUS Unified Model and Offline Aerosol Mass
Concentration

[9] The CACTUS Unified Model, based on the 4°-latitude-
by-5°-longitude, 9 layer GISS GCM 1II', simulates the fully
coupled interactions of chemistry, aerosol, and climate [Liao
et al., 2003; 2004; Liao and Seinfeld, 2005]. The model is
coupled to a Q-flux ocean, with monthly horizontal heat
transport fluxes taken from Mickley et al. [2004]. Changes in
the sea surface temperature and sea ice are determined by
energy exchange with the atmosphere, ocean heat transport,
and the ocean mixed layer heat capacity [Hansen et al.,

1984; Russell et al., 1985]. The model includes detailed
tropospheric O3-NO,-hydrocarbon chemistry, as well as
heterogeneous processes, such as hydrolysis of N,Os and
irreversible absorption of NO3;, NO,, and HO, on wetted
particle surfaces. Aerosol species predicted in the model
include sulfate, nitrate, ammonium, black carbon (BC), pri-
mary (POA) and secondary organic aerosol (SOA), sea salt,
and mineral dust. Condensation and dry and wet deposition
(not size-dependent) are included in determining the aerosol
mass budgets. The CACTUS Unified Model has been used in
a number of climate studies to identify the influence of cli-
mate change on the predictions of tropospheric chemistry and
aerosol [Liao et al., 2006], the climatic impact of ADE [Chen
et al., 2007], and the differences between fully coupled and
offline chemistry-aerosol-climate simulations [Liao et al.,
2009].

[10] In the version of the CACTUS Unified Model used
here, the formation of SOA from monoterpenes is based on
experimentally determined yield parameters [Griffin et al.,
1999a, 1999b; Chung and Seinfeld, 2002], assuming equi-
librium partitioning; SOA formation from isoprene is not
included in the current version of the model, which will be
updated in future work. The aerosol semidirect effect on
clouds (i.e., through changes in the atmospheric temperature
structure caused by aerosol absorption), in-cloud chemistry,
and wet removal of aerosols are accounted for. The model
does not include the climatic impact of AIE on the predic-
tion of aerosol fields. On the basis of the calculations given
by Liao et al. [2006], a 10% increase in global mean
precipitation results in a 9-13% decrease in burdens of
tracer-like aerosols (e.g., BC and POA). Since the global
precipitation change owing to AIE is generally less than
2%, as shown later in the climate simulations, the effects
of neglecting AIE-induced climate change on global mean
predicted aerosol mass in the present study should be
small, but we note that some regional biases may exist.

Table 2. Global Annual Burdens of Aerosols Derived by the CACTUS Unified Model®

PI Year 2000 (20C) Year 2100 (21C)

Global NH SH Global NH SH Global NH SH
Ammonium bisulfate 0.41 0.19 0.22 2.87 2.27 0.60 2.74 2.01 0.73
Ammonium nitrate 0.22 0.11 0.11 0.67 0.48 0.19 2.88 2.44 0.44
POA 0.08 0.05 0.03 1.23 0.88 0.35 2.88 2.11 0.77
SOA 0.17 0.08 0.09 0.28 0.18 0.10 0.38 0.26 0.12
BC 0.01 0.006 0.004 0.23 0.18 0.05 0.52 0.42 0.10
(Total) 0.89 0.44 0.45 5.28 3.99 1.29 9.40 7.24 2.16
Sea salt® - - - 4.96 1.64 3.32 - - -

“Present-day (20C) sea salt concentrations are used in the calculation of preindustrial (PI) and 21C N, fields. Units are Tg dry mass. POA, primary

organic aerosol; SOA, secondary organic aerosol; BC, black carbon. NH,

3

Northern Hemisphere; SH, Southern Hemisphere.

of 23



D12207

Pre-industrial 1.75 mg m?

I [ [ I

[ | I
0 01 02 05 1.0 20 12 25 40 60

Figure 2. Annual mean total column burden (mg m %) of
sulfate, nitrate, ammonium, primary organic aerosol
(POA), secondary organic aerosol (SOA), and black carbon
(BC) for (a) preindustrial (PI), (b) 20th century (20C), and
(c) 21st century (21C). Global average values are given in
the upper right corner of each plot.

[11] Three simulations with the CACTUS Unified Model
were carried out, each using emissions of aerosols, aerosol
precursors, and ozone precursors corresponding to PL, 20C,
and 21C, while GHG were held at present-day levels in all
the simulations. Emissions for 20C and 21C are based on
Intergovermental Panel on Climate Change (IPCC) Special
Report on Emissions Scenarios (SRES) A2. Emissions for
PI are based on those for 20C, with relevant scaling (as
detailed by Liao and Seinfeld [2005] and Liao et al. [2006]).
All three simulations were initiated by an equilibrium cli-
mate corresponding to 20C GHG and integrated for 6 years.
Since the levels of GHG are fixed throughout the simula-
tions, the differences between the derived PI, 20C and 21C
aerosol concentrations result entirely from emission changes.
Results from the last 5 years in each simulation are averaged
to obtain a grid-by-grid, annual cycle of monthly averaged
aerosol mass concentrations. These aerosol concentrations
are used later in deriving the offline N, values (section 2.2)
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and also to account for aerosol direct radiative effects (ADE)
in the climate simulations (section 2.3.3).

[12] Table 2 lists the predicted global and hemispheric
annual burdens of ammonium bisulfate, ammonium nitrate,
POA, SOA, BC, and sea salt aerosols, derived for PI, 20C,
and 21C. Each of the above species shows significant
increase from PI to 20C. From 20C to 21C, sulfates are
predicted to decrease owing to reductions in projected SO,
emissions; nitrate levels are predicted to increase more than
fourfold, while POA and BC are predicted to double.
Figure 2 shows the annual global mean column burdens of
anthropogenic aerosol for PI, 20C, and 21C. Increases in
peak concentrations are predicted over heavily industrial-
ized and populated areas of South and East Asia, Europe,
and the eastern United States. Outflows from the major
biomass burning regions in South America and western
Africa are also prominent. Predicted global column bur-
dens of sea salt for 20C are shown in Figure 3. With a
predicted global burden of 4.96 Tg, sea salt concentrations
are highest over the southern ocean and the midlatitude
ocean over Northern Hemisphere (NH), corresponding to
the strong winds that lead to high emissions in these areas.

2.2. GISS-TOMAS Model, FN Activation
Parameterization, and Derivation of Aerosol-N,
Relationships

[13] GISS-TOMAS and the NS activation parameteriza-
tion (with the mass transfer corrections as implemented in
FN) are used to provide the diagnostic relationship between
aerosol levels and N,. The size-resolved TOMAS micro-
physics module simulates aerosol number concentration,
size distribution, composition, and CCN online within the
GISS GCM 1II'; detailed descriptions are provided by Adams
and Seinfeld [2002] for sulfate simulations and Pierce and
Adams [2006] for the implementation of sea salt aerosol.
In brief, the module tracks both the number and the mass of
aerosols in each size bin in the aerosol distribution. A sec-
tional approach is applied to define the boundaries of 30 size
bins (spanning approximately dry diameters of 0.01 to 10 um),
in terms of dry aerosol mass. Microphysical processes
include coagulation, condensation/evaporation, nucleation,

-180 -90 0 90 180
T I I I [ I ]
0o 01 02 05 10 20 50 12 25 40 60

Figure 3. Annual mean column burden of sea salt (mg m %)
for 20C. Global average values are given in the upper right
corner.

4 of 23



D12207

and in-cloud sulfur oxidation. Sulfate is assumed to exist as
ammonium bisulfate and to be internally mixed with sea salt.
The NS activation parameterization is then applied online to
compute nucleation scavenging of aerosol and N, from the
aerosol simulation. NS is a comprehensive and efficient for-
mulation, which has been evaluated extensively with
numerical simulations [Nenes and Seinfeld, 2003; Fountoukis
and Nenes, 2005], as well as in situ measurements [Meskhidze
et al., 2005; Fountoukis et al., 2007]. NS and FN is based on
the framework of an ascending adiabatic cloud parcel; N, is
determined by the maximum supersaturation, s,,,,, which is
controlled by the water vapor balance and is obtained by
classifying the droplets by proximity to their critical diameter
(“population splitting”). In this study, a single cloud base
updraft velocity of 0.6 m s ' over land and 0.3 m s ' over
ocean is prescribed, based on in situ measurements of updraft
velocity in stratocumulus clouds [Fountoukis et al., 2007].
Using a single updraft velocity gives optimal closure between
observations and theory for cloud droplet calculations in
cumulus and stratocumulus clouds, provided that it expresses
the average vertical velocity distribution in the boundary
layer [e.g., Meskhidze et al., 2005; Peng et al., 2005;
Fountoukis et al., 2007]. On the basis of the calculations by
R. Morales and A. Nenes (Characteristic updrafts for
computing distribution-averaged cloud droplet number,
autoconversion rate and effective radius, submitted to Geo-
physical Research Letters, 2009) and the conclusions from
previous works [e.g., Meskhidze et al., 2005; Fountoukis et
al., 2007], N, computed as an integral over a updraft veloc-
ity distribution is close to that computed at a single, distri-
bution-averaged updraft velocity, and the difference is at
most 10%. For grid cells that contain both ocean and land, a
weighted average of droplet number is computed based on the
fractional coverage. The effective water vapor uptake coef-
ficient (which affects the water vapor mass transfer coeffi-
cient during droplet formation) is set to 0.06, following
Fountoukis et al. [2007]. The model was integrated for
2 years with present-day emissions of sulfur and sea salt;
monthly, grid-by-grid CCN spectra are then derived from the
simulations of the second year.

[14] On the basis of the monthly averaged CCN spectra
obtained from GISS-TOMAS, an aerosol-N,, relationship is
derived for each grid cell and month as follows: the aerosol
concentration is varied between 0.05 and 5 times the aver-
age concentration, and the corresponding N,. is computed by
application of FN (using the same updraft velocity and water
vapor uptake coefficient as in the online simulation). The
relationship between aerosol amount (expressed in terms of
molar concentration of total soluble ions from sulfate and
sea salt, m;, in mole m* air) and N, (m>) is then correlated
in the format proposed by Boucher and Lohmann [1995],

log g Ne = 4 + Blogym; (1)

[15] The coefficients 4 and B are computed for each grid
cell in each month by least mean squares optimization.
Thereby, geographic and seasonal variations of aerosol-
cloud interactions are represented by the values of the two
coefficients. The correlation coefficients in all fits range
between 0.85 and 0.99. The diagnostic formulation devel-
oped here is particularly useful for GCM studies because it
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is based on (1) aerosol soluble ions rather than mass or
composition of certain aerosol species, and therefore can be
applied broadly to global models; and on (2) detailed cloud
microphysics and activation models, yet is computationally
efficient as compared to an online detailed cloud micro-
physical module. In general, over pristine areas, coefficient
A in equation (1) = 1.7 to 2.4, and coefficient B = 0.6 to 1.0;
over highly polluted areas, A = 2.4 to 3.0, and B = 0.4 to
0.6. As a comparison, Boucher and Lohmann [1995], based
on mass of sulfate aerosols, derived A = 2.06 and B = 0.48
over ocean and A = 2.240 and B = 0.257 over land (strat-
iform clouds); Quaas et al. [2006] correlated N, with fine-
mode aerosol optical depth from satellite data and yielded
globally A =2.17 and B = 0.30.

[16] To obtain the offline, monthly averaged N, values
for the equilibrium climate simulations, the 9 layer aerosol
mass concentrations of sulfate, nitrate, ammonium, carbo-
naceous, and sea salt aerosols derived in the Unified Model
(section 2.1) are converted to soluble ion concentrations. We
assume sea salt distributions in PI and 21C are the same as in
20C, since the uncertainties related to sea salt concentrations
may be significant for PI and 21C [Liao and Seinfeld, 2005],
and the focus of the present study is on the impacts of
anthropogenic aerosols. We assume that ammonium bisul-
fate, ammonium nitrate, and sea salt aerosols are fully solu-
ble, POA and SOA is 80% soluble [Limbeck and Puxbaum,
2000; Bougiatioti et al., 2009], BC is insoluble, and each of
the soluble species forms an ideal solution. Since most
carbonaceous compounds do not dissociate significantly, a
van’t Hoff factor of 1.0 is assumed for soluble organic
aerosols [e.g., Giebl et al., 2002; Raymond and Pandis,
2002; Sun and Ariya, 2006; Dinar et al., 2006]. A molar
mass of 0.2 kg mole ' is used to convert mass concentration
into molar concentration for organic aerosols [4sa-Awuku et
al., 2008; Engelhart et al., 2008; Asa-Awuku et al., 2009;
Bougiatioti et al., 2009], a rough surrogate for the diversity
of organics traced in the Unified Model, of which the molar
masses span between 0.09 and 0.3 kg mole '. The N. — m;
formulations with the derived monthly coefficients at each
grid cell were then applied to calculate N, for PI, 20C, and
21C conditions. A lower limit of 20 cm " is prescribed for N,
based on annual average N, in pristine marine environments
[e.g., Seinfeld and Pandis, 1998; Glantz and Noone, 2000;
Bennartz, 2007]. The monthly N, values were interpolated
from a vertical resolution of 9 layers into 23 layers, according
to the o levels of the GISS-II" and GISS III GCMs, ensuring
conservation of total N, in the entire column.

[17] Figure 4 shows the derived annual mean N, at the
lowest model level (972 hPa) for PI, 20C, and 21C, with the
results before and after applying the minimum N, value.
Assuming a minimum N, of 20 cm > (right column) would
increase N, over pristine ocean in PI and 20C conditions,
whereas the change in 21C is essentially negligible.
Figures 5a and 5b show the changes from PI to 20C and
from 20C to 21C. The predicted increase in annual mean
N, value in 850 hPa level is 58.3 cm > from PI to 20C and
31.9 cm 2 from 20C to 21C. The areas predicted to exhibit a
significant N, increase from PI to 20C are closely related to
areas of enhanced concentrations of anthropogenic sulfate,
nitrate, ammonium, and organic aerosols (Figure 2). For
changes between 20C and 21C (Figure 5b), large increases
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Figure 4. Predicted annual mean N, at the lowest model layer (972 hPa) for (a) PI, (b) 20C, and (c) 21C.

(left) Results assuming no minimum N, value. (right) Results assuming a minimum Value of N.=20 cm

3

Global average values are given in the upper right corner of each plot.

in near-surface N, are predicted over the aerosol source
regions over China, South America, and southern Africa
where all anthropogenic aerosols are predicted to increase in
21C. Over the source regions of western Europe and eastern
United States, the predicted future decrease in sulfate aero-
sols owing to sulfate precursor emission regulation is can-
celed by the increase of nitrate and OA, leading to higher N,
in 21C. Over northern high latitudes where the predicted
decrease of sulfate aerosols dominates the future change of
soluble aerosol burdens, N, is estimated to decrease. The
enhancement in N, from 20C to 21C is 58% of that from PI
to 20C, although the predicted increase in aerosol mass
column (Table 2) is of comparable magnitude in each period
(+4.39 Tg between PI and 20C; +4.13 Tg between 20C and
21C). The value of N, is correlated with aerosol soluble
mass by the power law in equation (1), and the coefficient B

in equation (1) is mostly between 0.5 and 1.0. Therefore the
increase in predicted N, has a smaller magnitude as com-
pared with the increase in aerosol column mass.

[18] Note that the N.-m; correlations are developed based
on CCN predictions of sulfate and sea salt only, while the N,
values are calculated based on mass of sulfate, nitrate,
ammonium, soluble OA, and sea salt. The version of the
TOMAS model used in the present study does not include
nitrate and carbonaceous aerosols, therefore the chemical
and number concentration effects of nitrate and carbona-
ceous aerosols on the CCN spectrum are not included in the
derivation of the N_-m; correlations.

2.3. GISS III GCM

[19] Detailed descriptions and evaluation of the GISS III
are provided by Rind et al. [2007]. In addition to the
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Figure 5. (top) Changes in annual mean N, at the 850 hPa level from (a) PI to 20C and (b) 20C to 21C.
(bottom) Annual mean full aerosol indirect effects (AIE) forcing from (c) PI to 20C and (d) 20C to 21C.
Global average values are given in the upper right corner of each plot. Displayed are results of setting

minimum N, values = 20 cm >

increase in vertical resolution from 9 o-layers in GISS GCM
I (between surface and 10 hPa) to 23 o-layers (between
surface and 0.002 hPa), major modifications in GISS III
include more sophisticated treatments in downdraft
entrainment and the detrainment of cumulus condensate into
an anvil similar to stratiform cloud, the addition of com-
pensatory subsidence in moisture advection, new formula-
tions of boundary layer temperature, moisture and scalar
fluxes, and turbulent kinetic energy, as well as more cor-
related k intervals in the radiative scheme. Compared to the
other commonly used version of GISS GCM, the GISS
ModelE, GISS III predicts different liquid water path,
interhemispheric transport, precipitation over land in the
monsoon region, total cloud cover and albedo, and gravity
wave drag [Rind et al., 2007], owing to differences in
detailed treatments. The stratiform cloud scheme in GISS III
is based mainly on the work of Del Genio et al. [1996]. In
order to simulate AIE-related response in cloud optical
properties, precipitation, and radiation, the formulations of
cloud optical depth and autoconversion rate in the stratiform
cloud scheme were revised, as described below.

2.3.1. Modification of Stratiform Cloud Scheme:
Droplet Effective Radius and Cloud Optical Depth

[20] The stratiform cloud scheme diagnoses the cloud
radiative properties based on the cloud optical depth 7 and
the effective droplet radius 7,, which is related to the
volume-weighted mean droplet radius 7, by

)

[21] A single value of 0.48 is chosen for the constant  in
the standard GISS III [Menon et al., 2002; Rind et al.,
2007], which corresponds to an effective variance of 0.2.
In the standard algorithm in GISS 1III, 7, is determined by an
empirical scaling based on the value of 1o, which implicitly
assumes a constant value of N, = 60 cm > over ocean and
N, = 170 cm ™ over land [Del Genio et al., 1996]. In the
present study, to include the cloud albedo effect in strati-
form clouds, the following equation is applied,

1
Te = K 31,

1

3 3
1y = ad
[4ﬂNcpw}

3)
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so that r,, is determined by 1 and the offline N, (m ™) values
imported to each grid cell on a monthly basis. Therefore, r,
and 7 are controlled by the spatial and seasonal variations of
N,, which are driven by the changes in aerosol mass and
aerosol-cloud interactions. Note that equation (3) is also
applied to compute the radius in droplet evaporation. Addi-
tional modifications to the scheme of Del Genio et al. [1996]
include a change in the value of x (0.67 over land and 0.80
over ocean [Martin et al., 1994]) to reflect the broader dis-
tributions of terrestrial clouds (with respect to oceanic),
constraints on the minimum and maximum values of r, (2
and 20 um, respectively), and a constraint of in-cloud liquid
water content < 3 g m . The above modifications are applied
to pure liquid stratiform clouds only (temperature > 4°C over
ocean, and > —10°C over land); ice stratiform clouds (tem-
perature < —40°C), mixed-phase stratiform clouds, as well as
convective clouds, follow the scheme of Del Genio et al.
[1996].
2.3.2. Modification of Stratiform Cloud Scheme:
Autoconversion Rate

[22] The basic autoconversion formulation in GISS III is
related to that given by Sundqvist et al. [1989],

1—e {_ <_>} (4)

where ¢, is the cloud liquid water mixing ratio, Cy is the
limiting autoconversion rate (s "), and Leris 18 the critical in-
cloud water content for the onset of rapid conversion. To
explicitly relate ¢, to N,, this parameterization is replaced
with that developed by Khairoutdinov and Kogan [2000]
(KK hereafter), and modified to account for the fractional
cloudiness in each GCM grid cell,

dq,

= C
dr 0q1

aut

dq;

qan\2* . _179
- <_ :
- 350+b b) N (5)

aut

To ensure that the same radiative balance is maintained
before and after the replacement of the autoconversion
parameterization, a tuning parameter -y is used [Hoose et al.,
2008]. In the typical ranges of liquid water and N,, auto-
conversion rates calculated by the KK scheme can be 1 to
1000 times smaller than those by the Sundquist scheme
[Penner et al., 2006; Hsieh et al., 2009]. When im-
plementing the KK scheme in GISS III, proper adjustment
to the autoconversion rates is needed to avoid the uninten-
tional increase in liquid water path (LWP) and the subse-
quent “drift” toward a cooler climate. The value of v is
determined by minimizing the imbalance of top-of-atmo-
sphere (TOA) radiation, the same approach adopted by
Hoose et al. [2008]. Starting from a present-day equilibrium
climate predicted by the standard GISS I with fixed
present-day SST and sea ice (the HadISST1 observed cli-
matology for 1993 to 2002 [Rayner et al., 2003]), the
modified GCM is integrated for 1 year, with a specific value
of . The annual mean TOA net radiation is diagnosed. By
testing various values between 1 and 100, v = 8.0 produces
the closest net TOA radiation balance and thus is chosen.
[23] A new Q-flux field is derived to secure consistency
between the ocean model and the atmospheric model that
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has 20C GHG levels and 20C N, with modified stratiform
cloud scheme. This Q-flux ocean is then used in all AIE
equilibrium climate simulations described in section 4.
2.3.3. Aecrosol Direct Effect in GISS III

[24] The sulfate, nitrate, ammonium and carbonaceous
aerosol masses derived by the Unified Model are also to be
used in the equilibrium climate simulations to account for
the anthropogenic aerosol direct effect in GISS III. Calcu-
lation of the anthropogenic aerosol direct effect follows
Chen et al. [2007]. The monthly averaged aerosol mass
concentrations derived by the CACTUS Unified Model
(section 2.1) are interpolated into 23 layers accordingly.
Internal mixing of ammonium sulfate, ammonium nitrate,
BC, POA, SOA and aerosol associated water is assumed. A
standard gamma size distribution is assumed for the aerosol
mixture with a surface area-weighted dry radius = 0.3 um
and variance = 0.2. The density of the internally mixed
aerosol is computed as the mass-averaged density of water
and dry aerosols. Refractive indices are derived based on a
volume-weighted mixing rule. The refractive index of dry
nitrate is assumed the same as that of dry sulfate [Toon et
al., 1976], while the refractive indices for organic carbon,
BC, and water are from d’Almeida et al. [1991] (organic
carbon as “water soluble,” BC as “soot”). Mie theory is
applied to determine extinction efficiency, single-scattering
albedo, and asymmetry parameter from a lookup table,
which are then supplied to the radiation scheme of the GCM
to calculate the aerosol optical depth and the radiation
fluxes. The internal mixing assumption yields a relatively
high absorption efficiency per unit mass of BC [e.g.,
Haywood et al., 1997; Myhre et al., 1998; Jacobson, 2000;
Chung and Seinfeld, 2002, 2005].

[25] The ADE of sea salt and dust is accounted for by
using the background, present-day sea salt and dust optical
depth climatology provided in the standard GISS III. This
sea salt/dust climatology is identical to that in GISS ModelE,
[e.g., Schmidt et al., 2006]. All the simulations used the same
sea salt and dust ADE, so the climatic effects of these natural
aerosols are removed when the simulations are differentiated
in pairs. The ADE forcing in the present study results solely
from the changes in the internal mixture of anthropogenic
aerosols (i.e., sulfate, nitrate, ammonium, and carbonaceous
particles) predicted by the Unified Model.

3. Radiative Forcing

3.1. Radiative Forcing of GHG, ADE, and AIE

[26] Table 3 summarizes the radiative forcings of GHG,
ADE, and AIE in the present study. For GHG and ADE, the
forcings are determined by the instantaneous change in net
radiative fluxes at the tropopause (without adjustment in
stratospheric temperature). The calculations are carried out
with prescribed present-day SST and sea ice, using parallel
calls of the radiation scheme. Between the present day and
year 2100, the changes in GHG and ADE in the simulations
are estimated to result in forcings of +6.47 W m 2 and
+0.12 W m 2, respectively. These values are close to those
reported by Chen et al. [2007] (+6.58 W m > for GHG and
+0.18 W m  for ADE), which were derived using the 9 layer
GISS GCM II" with identical offline aerosol fields and similar
GHG levels to the present work.
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Table 3. AIE, ADE, and GHG Forcing in the Present Study
20C to PI (W m™?)

21C to 20C (W m?)

+0.12
+6.47
—0.58 (—0.65, 12%)

Instantaneous ADE forcing -
Instantaneous GHG forcing

AIE forcing, full® —1.67 (-1.70, 2%)

?AlIE forcing is derived with prescribed sea surface temperature (SST)
and the modified stratiform cloud scheme, allowing full response of
cloud water and precipitation. AIE forcing is defined as the change in
net (shortwave + longwave) cloud forcing (i.e., all-sky minus clear-sky
net radiative fluxes) at top of atmosphere (TOA). Values in parenthesis
are the AIE forcing with minimum N, = 10 cm™> and the percentage
change relative to the case of minimum N, = 20 cm >. ADE, aerosol
direct effect. GHG, greenhouse gas.

[27] Because AIE involves feedback mechanisms, the
concept of instantaneous radiative forcing cannot be applied,
especially when the cloud lifetime effect is considered. Total
AIE radiative forcing has to be determined by diagnosing
the changes in cloud forcing (CF, i.e., all-sky minus clear-
sky radiative fluxes), allowing at least the cloud water and
precipitation to respond, as described in the IPCC report
[Forster et al., 2007].

[28] Total AIE radiative forcing is derived by following
the literatures summarized in IPCC AR4 [Denman et al.,
2007]. The full AIE forcing calculations in the present
studies includes three simulations using prescribed present-
day SST and sea ice and the modified stratiform cloud
scheme, each with the offline N, values for PI, 20C, and
21C, respectively. The GHG is fixed to levels in 2000 in all
three calculations. Cloud and precipitation are allowed to
respond to different NV, values, while most of the tempera-
ture response is suppressed with the fixed SST. Therefore,
both cloud albedo and lifetime effects are taken into
account. The simulations were integrated for 20 years; with
a 5 year spin-up time, the net cloud forcing (CF, i.e., all-sky
minus clear-sky net radiative fluxes) at TOA over the last 15
years were averaged and compared (Table 3 and Figure 5).
The predicted global mean full AIE forcing is —1.67 W m >
for perturbation of N. from PI to 20C, lying within the
range to total AIE forcing reported in the literature (—0.29
to 241 W mfz) [e.g., Lohmann and Feichter, 2005;
Denman et al., 2007; Forster et al., 2007; Kirkevag et al.,
2008b]. The full AIE forcing is —0.58 W m > for pertur-
bation of N. from 20C to 21C. This value is larger than
that predicted by Kristjansson [2002] (-0.02 W m?),
which is based on the IPCC A2 emission scenario from
20C to 21C but considered only changes in anthropogenic
sulfate and BC aerosols, implying that the future AIE
forcing is mainly contributed by the increase in nitrate and
organic aerosols.

3.2. Sensitivity of AIE Forcing to the Lower Limit of NV,
Concentrations

[29] The AIE forcing can be sensitive to the minimum N,
concentrations assumed in the calculations [Lohmann and
Feichter, 2005]. To explore this sensitivity of the AIE
forcing in the present study, we repeat the above AIE
forcing calculations with a minimum N, = 10 cm > (Table 3;
numbers in parenthesis). When the minimum N,, is reduced,
the magnitude of the AIE forcing between PI and 20C is
predicted to be slightly enhanced (2%). Because predicted
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N, fields in pristine regions are below the minimum value
(Figure 4) in both PI and 20C conditions, the magnitudes of
CF in PI and 20C decrease almost equally when a smaller
minimum N, value is used. Thus, the AIE forcing, which is
the difference of CF between PI and 20C, only shows a
limited change with the value of minimum N,.. However, the
enhancement of AIE forcing between 20C and 21C is more
significant (+12%). The N, fields in 21C are generally above
the minimum value. Since the CF in 21C exhibits small
change and the CF in 20C decreases with smaller minimum
N,, the AIE forcing between 20C and 21C is predicted to
increase when the minimum N, is set to 10 cm °.

[30] As compared to the previous studies, the present
works predicts a weaker sensitivity of present-day AIE
forcing to the lower limit of N,.. For example, Lohmann and
Feichter [2005] showed that an increase of minimum N,
from 10 to 40 cm > results in a higher predicted present-day
AIE forcing from —1.9 to —1.1 W m 2 (72%); Kirkevdg et al.
[2008b] found that a global increase in N, by 15 cm >
changes the present-day AIE forcing from —2.34 to —1.36 W
m 2 (42%); Hoose et al. [2009] calculated a reduction of
global mean shortwave (SW) CF from —1.88 to —0.62 W m >
(67%) when minimum N, is increased from 0 to 40 cm >. This
sensitivity is associated with the differences in original N,
values (i.e., before any minimum N, value is applied)
predicted over pristine ocean between PI and present-day
conditions.

4. Experimental Setup for Equilibrium Climate
Simulations With GISS III GCM

[31] The experimental setups of the equilibrium climate
simulations with GISS III are summarized in Table 4. The
nomenclature of the simulations is as follows: (1) Upper
case letters denote the forcing mechanisms imposed on each
simulation, with G for greenhouse gas forcing, D for aerosol
Direct effect, and / for aerosol Indirect effect; and (2) sub-
scripts denote the levels of the forcing agents, with PI for

Table 4. Experimental Design of the Equilibrium Simulations
with GISS III GCM?

Simulation® GHG* ADE? AIE® Years of Integration
GDsoc 20C 20C - 100
GDsye 21C 21C - 100
GDnochroc 20C 20C 20C 30
GDyoclp 20C 20C PI 30
GDsochric 20C 20C 21C 30
GDarchyc 21C 21C 21C 30

4GCM, general circulation model.

°In the abbreviations, upper case letters denote the forcings imposed in
each simulations: G, greenhouse gases; D, aerosol direct effects; 7,
aerosol indirect effects. The subscripts denote the levels of the forcing:
PI, preindustrial; 20C, year 2000; 21C, year 2100. The first two
simulations were carried out with the standard GISS III, while the last
four simulations were performed with the modified GISS III.

°For 20C levels, CO, = 367 ppmv, CH, = 1668 ppbv, N,O = 315 ppbv,
CFC=11 = 260 pptv, and CFC=12 = 520 pptv. For 21C levels, CO, = 856
ppmv, CHy = 3578 ppbv, N,O = 445 ppbv, CFC-11 = 44 pptv, and CFC-
12 =216 pptv.

9From offline, monthly imposed aerosols of internally mixed sulfate,
nitrate, ammonium, BC, POA, SOA, and water.

°From offline, monthly imposed N.. in the calculation of optical depth
and autoconversion in warm stratiform clouds.
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Table 5. Global Annual Mean Values of Key Climate Variables
in the Present-Day Equilibrium Simulations With and Without
Explicit Droplet Dependence in Stratiform Clouds

Climate Variable® GD2OC GDZOCIZOC
T, (°C) 14.52 14.45
Total cloud (%) 61.31 61.16
Strat. cloud (%) 57.05 56.87
Low cloud (%) 51.70 51.30
TOA SW cloud forcing (W m?) —53.41 —53.84
LWP (g m?) 119.38 111.49
Precip., (mm d ) 2.99 2.98
Precip. (strat.) (mm d') 0.96 0.93
Surface SW flux (W m %) 161.98 162.83

T,, surface temperature; SW, shortwave flux; CF, cloud forcing; LWP,
liquid water path; precip., precipitation; strat., stratiform.

preindustrial level, 20C for year 2000 level, and 21C for
year 2100 level.

[32] GHG forcing is imposed by fixing the concentrations
of CO,, CHy, N,O, CFC-11, and CFC-12 at specific levels;
the values, based on IPCC SRES A2, are listed in the
footnotes in Table 4. ADE forcing is imposed by the using
the offline, monthly averaged aerosol mass concentrations
from the fully coupled CACTUS Unified Model (sections 2.1
and 2.3.3). AIE forcing is imposed by using the offline,
monthly averaged N, fields derived from the diagnostic for-
mulation and aerosol soluble ion concentrations (section 2.2)
to perturb cloud optical depth and liquid water (autoconver-
sion). The 12 month, annual cycle of both aerosol mass and
N, is repeated throughout the entire integration.

[33] The first two simulations were carried out to obtain a
starting climate for the four key simulations. These two runs
used the standard version of GISS III coupled with a Q-flux
ocean that is consistent with the atmosphere of 20C GHG
levels and standard stratiform cloud scheme (i.e., without
droplet-dependent cloud optical depth and autoconversion).
These two 100 year simulations are (1) GD,oc: present-day
equilibrium climate accounting for GHG and anthropogenic
aerosol direct effect at present-day levels; and (2) GD,c:
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year 2100 equilibrium climate accounting for GHG and
anthropogenic aerosol direct effect at year 2100 levels.

[34] The final year climate from the above simulations is
used as the starting point for the following four AIE equi-
librium climate runs. These 30 year simulations used the
modified GCM with the droplet-dependent stratiform clouds
and the consistent Q-flux ocean mentioned in section 2.3.2:
(1) GDyoclroc: present-day equilibrium climate accounting
for GHG and anthropogenic aerosol direct and indirect ef-
fects at present-day levels (offline N, values corresponding
to present-day aerosol levels); (2) GD,oclpr: equilibrium
climate accounting for GHG and anthropogenic aerosol
direct effect at present-day levels and aerosol indirect effects
at preindustrial levels (offline N, values corresponding to
preindustrial aerosol levels); (3) GD,oclic: equilibrium
climate accounting for GHG and anthropogenic aerosol
direct effect at present-day levels, and aerosol indirect ef-
fects at year 2100 levels (offline N, values corresponding to
year 2100 aerosol levels); and (4) GD,iclic: year 2100
equilibrium climate accounting for GHG, and anthropogenic
aerosol direct and indirect effects at year 2100 levels (offline
N, values corresponding to year 2100 aerosol levels).

[35] Statistics over the last 20 years of each of the above
equilibrium climates are determined. Differences between
the simulations are analyzed as follows: (1) GDyoc versus
GDyoclroc: the effect of incorporating explicit droplet-
dependent autoconversion and optical depth and offline N,
values on present-day equilibrium climate (section 5.1); (2)
GDyoclroc versus GDyoclpr: differences in equilibrium cli-
mate owing only to changes in N, between preindustrial and
present day (section 5.2); (3) GDyoclrc versus GDsoclroc:
differences in equilibrium climate owing only to changes
in N, between present day and year 2100 (section 5.3); and
(4) GDy ¢l c versus GDyclpoc: differences in equilibrium
climate between present day and year 2100 accounting for
changes in GHG and anthropogenic aerosol direct and indi-
rect effects (section 5.4).

[36] When differentiating each pair of the simulations, the
two-sample “usual” ¢ test was applied to calculate the 95%
confidence intervals [Zwiers and von Storch, 1995; Chen et

Table 6. Comparison of Global Annual Mean Cloud Properties in Present-Day Simulation GD,oclhoc With Remote Sensing Observations

and Predictions in Selected GCM Studies

GDsochhoc Observation Modeling Studies
Total column N (10" m™?) 6.16 4.4° 2.1to 7.6°
N, at 850 hPa (cm °) 122.22 75.0 to 135.0¢

r. at cloud top® (um) (global) 12.18, (land)
9.26, (ocean) 13.10
111.49

—53.84

LWP (g m?)
TOA SW CF (W m?)

(global) 11.4f and 14.7,
(land) 12.5.% (ocean) 15.6%
93.3!

(global) 6.8 to 11.3"

41.5 to 110.0/
—49.9 to —61.0"

#Accounts for cloudy periods in cloudy regions only.

®Han et al. [1998] (International Satellite Cloud Climatology Project (ISCCP), average of January, April, July, and October 1987).
“Menon et al. [2002] (GISS II with prescribed SST) and Hoose et al. [2008] (ECHAMS-HAM with in-cloud aerosol processing scheme and prescribed

SST).

4Penner et al. [2006] (CAM-Oslo, LMD-Z, and CCSR with prescribed SST, in exp. 6).

*Modeled values are multiplied by 2'”* to approximate cloud top condition in the satellite retrievals.

"Han et al. [1994] (ISCCP, average of January, April, July, and October 1987).

EMeskhidze et al. [2007] (Moderate Resolution Imaging Spectroradiometer (MODIS), 2000 to 2006).

T‘Menon et al. [2002], Kristiansson et al. [2005] (CCM-Oslo with slab ocean, exp. ALLTOT), and Penner et al. [2006].

'Penner et al. [2006] (MODIS).

JKristjansson et al. [2005], Penner et al. [2006], and Hoose et al. [2008].

“Kiehl and Trenberth [1997] (Earth Radiation Budget Experiment (ERBE), November 1984 through February 1990).
ICollins et al. [2006a] (CCSM3), Collins et al. [2006b] (CAM3), Penner et al. [2006], Hoose et al. [2008], and Kirkevig et al. [2008b] (CAM-Oslo).

10 of 23



D12207

[CloudSat]

OF—T—T T T 71
100
200
300
400
500
600

700

800

_
=
S

LS

2 T

900

[GD20cl20c]

100
200
300
400
500
600

700

800
900

! ! I-ll |‘| [
90 -60 -30 0

N T 7 7 7
0 0.1 0.2 03 0.4 0.6

1000

Figure 6. Zonal vertical distribution of present-day cloud
frequency from (top) CloudSat observations (from July
2001 to August 2002) and (bottom) Goddard Institute for
Space Studies (GISS) III general circulation model (GCM)
prediction (GD,oclroc, accounting for aerosol indirect effects).

al., 2007] (see Table 7, footnote). The results reported in
sections 4 and 5 are statistically significant, unless otherwise
explicitly noted.

5. Responses of the Equilibrium Climate

5.1.

[37] Comparing simulations GDyc versus GD,oclroc, it
is found that (Table 5) replacement of the autoconversion
scheme results in a smaller (—4.1%) global annual mean
LWP, which can be explained as follows. The offline,
present-day N, values imposed on the modified model are,
on average, higher than the constant values of N, implicitly
assumed in the standard model in the calculation of cloud

Predicted Present-Day Equilibrium Climate
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optical depth (section 2.3.1). Before replacing and tuning
the autoconversion scheme, this change in N, fields alone
causes the predicted stratiform clouds to be more reflective
(results not shown). Since the new autoconversion scheme is
tuned to match the overall TOA radiation balance simulated
in the standard model (section 2.3.2), to compensate for the
previous effect of higher N, the tuning eventually results in
a lower LWP in the modified model. The modified GISS III
also predicts a slightly cooler global mean surface temper-
ature (4.45 K versus 4.52 K), less cloud cover, stronger
(more negative) SW CF, and a more positive surface SW
flux, whereas the predicted global mean precipitation rate is
essentially identical between the standard and modified
versions of GISS III.

[38] Several key cloud properties in the predicted present-
day equilibrium climate with AlE-related processes
(GDyoclroc) are compared to satellite-retrieved climatology
in Table 6 and Figures 6-8; the remote sensing instruments,
observational periods, and related references are given in the
footnotes for Table 6 and captions for Figures 6—8. Note that
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Figure 7. Present-day cloud droplet radius at warm cloud
top from (top) Moderate Resolution Imaging Spectroradi-
ometer (MODIS) retrievals (year 2000 to 2006) and (bottom)
GISS III GCM prediction (GD,oclroc, accounting for aerosol
indirect effects). Global average values are given in the upper
right corner of each plot.

11 of 23



D12207

150
ERBE
100 | — [GDaoclac]
= = = [GDxoc]
50 v
‘—/.—-—\_/\«__/—_Q\

TOA CF (W m2)
(=)

-50 \_,

—\/f '\SW
-100
150 . . . . .

-90 -60 -30 0 30 60 90
Latitude

Figure 8. Zonal annual mean distribution of present-day
top-of-atmosphere (TOA) shortwave (SW) and longwave
(LW) cloud forcing (CF) observations from Earth Radiation
Budget Experiment (ERBE) [Kiehl and Trenberth, 1997]
(gray lines) and predicted in GISS III with AIE process
(GDyoclroc, black solid lines) and without AIE process
(GDyc, black dashed lines).

exact agreement is not expected because of different time
periods as well as the fact that the simulation is an equi-
librium climate corresponding to present-day forcing,
whereas the data reflect the actual transient climate. Also,
the model data are sampled and summed at each time step
(i-e., every 1 h for cloud microphysics; every 4 h for radiative
properties), more frequently than the sampling of the satellite
retrievals. Thus, the general latitudinal distributions of the
variables are most relevant.

[39] Figure 6 compares the modeled present-day annual
mean total cloud frequency zonal vertical profile (in
GDyoclroc) with observation from the CloudSat cloud pro-
filing radar (version 5.1, release 4 [RO4], August 2006 to
July 2007). CloudSat measures the backscattered power
using a 94 GHz, nadir-viewing radar to derive cloud and
precipitation properties [Stephens et al., 2008]. The modi-
fied GISS III captures the general shape of the cloud fre-
quency zonal vertical distribution, including the ITCZ over
the tropics and the midlatitude storm tracks. For low-level
liquid cloud, which is the focus in the present study, the
altitude of peak cloud frequency at midlatitudes in GISS III
locates around 950-900 hPa (the second and third model
layers), lower than the peak altitude at 850 hPa in the
CloudSat observation (corresponding to the fourth model
layer in GISS III). GISS III also overestimates the low cloud
near the Tropics. The cloud frequency predicted in the
standard GISS III (GD,qc) is essentially identical to that in
the modified model (not shown), implying the biases are not
related to the modifications of the stratiform cloud scheme.
The lower altitude of midlatitude liquid cloud frequency and
overestimation of Tropical shallow clouds are commonly
predicted in many GCMs (results not shown). These dif-
ferences between the modeled and observed low-level cloud
frequency may be related to the facts that (1) vertical reso-
lution is different between GISS III (increasing from 200 m
in the first layer to 600 m in the fourth layer) and CloudSat
(250 m), (2) low cloud with tops below 1 km (~900 hPa) are
underrepresented in the CloudSat data, owing to radar
clutter contamination from the surface [Stephens et al.,
2008], and (3) the uncertainties in cloud parameterization,
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such as the relative humidity (RH) threshold for determining
cloudiness in the RH-based stratiform cloud scheme in
GISS GCM.

[40] Figure 7 compares the predicted global annual mean
r. at warm cloud top in GDyoclroc With the climatology
retricved by Moderate Resolution Imaging Spectro-
radiometer (MODIS Terra, Collection 005, Level-3, quality-
assured pixel-weighted cloud properties averaged at 1° by
1° resolution; composites were made using monthly averages
of available MODIS data from year 2000 to 2006 [Meskhidze
et al., 2007; M. King et al., Collection 005 change summary
for the MODIS cloud optical property (06-OD) algorithm,
2006, available at http://modis-atmos.gsfc.nasa.gov/pro-
ducts, CO05update.html]) To ensure proper comparison with
the satellite data, the predicted values at cloud top are taken
and averaged over cloudy regions with cloud top temperature
higher than 273 K, with the cloud top defined as the highest
GCM layer with liquid water content (LWC) > 10° g m™>
[Meskhidze et al., 2007]. Note that the 7, in satellite retrieval
represents the characteristic value at the cloud top, while the
model value represents the average over the entire GCM
layer in which the cloud top resides [Boucher and Lohmann,
1995; Quaas et al., 2004; Chen and Penner, 2005;
Meskhidze et al., 2007]. To address this issue, we follow the
treatment of Meskhidze et al. [2007] and multiply the mod-
eled r, at cloud top by 2", assuming that LWC varies linearly
with height (i.e., LWC at the top = 2xLWC averaged over
the layer) and N, remains constant with height in the cloud
top layer. This scaling to the modeled r, is applied here only
for the comparison with satellite retrievals, but not in the
climate simulations. As compared to MODIS data, GISS III
simulates similar land-ocean contrast of r,, with highest
values over tropical Pacific owing to the conditions of low
N, and high LWC, and lowest values over industrialized
regions in China, western Europe and eastern United States
owing to highly enhanced N.. However, GISS III system-
atically underestimates r, by 2 to 3 um in both land and
ocean areas, as summarized in Table 6. Such biases are
common in many present GCMs [Boucher and Lohmann,
1995; Quaas et al., 2004; Chen and Penner, 2005;
Meskhidze et al., 2007], and are likely related to the un-
certainties in the updraft velocity, liquid water content and
its variability, and the cloud parameterization in the model,
as well as the coarse model resolution and uncertainties in
the retrieval algorithms.

[41] Figure 8 shows the zonal mean present-day short-
wave and longwave TOA cloud forcing. While the predicted
longwave (LW) CF matches well the observations of the
Earth Radiation Budget Experiment (ERBE) [Kiehl and
Trenberth, 1997], the model-derived SW CF exhibits a
negative bias over the Tropics and a positive bias in mid-
latitudes to high latitudes in both hemispheres. Present-day
cloud forcings predicted by modified GISS Il (GDyoclroc,
black solid lines) are very similar to those in the standard
GISS I (GDsgc, black dashed lines), indicating the bias in
CF is not associated with the AIE-related processes intro-
duced in section 2.3.

[42] Table 6 lists the corresponding global mean values
reported in several modeling studies focusing on AIE. Pre-
dictions of N, r,, and CF in simulation GD,oclroc generally
fall within the range of previous studies. Although LWP is
overestimated in the present work when compared to both
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Figure 10. Present-day climate response to perturbation
of AIE from preindustrial to present day (GDyoclroc —
GD>oclpr): zonal mean changes in (a) N, at 850 hPa (cm >),
(b) TOA SW CF (W m ), (¢) T (K), and (d) precipitation
(mm d™") (Black solid lines indicate annual average, gray
lines indicate average over December—January—February
(DJF), and dotted lines indicate average over June—July—
August (JJA)).

observation and previous predictions, one should note the
uncertainties involved in the retrieval of this variable, the
difference in cloud schemes and aerosol treatments used in
various global models. Besides, from the simulations dis-
cussed subsequently, we find that the LWP in the GISS III is
sensitive to temperature change, and increased/decreased
LWP is always predicted when the model climate is
warmed/cooled. The high bias of the present-day LWP can
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be explained partly by the fact that the simulated equilibrium
climate is about 0.5 K warmer than the actual present-day
climate [Jones et al., 1999], with the “warming commitment”
of the GHG forcing not yet fully realized.

5.2. Effects of Change of N, from Preindustrial
to Present Day on Equilibrium Climate

[43] In this section, the equilibrium climate response to
the AIE perturbation from preindustrial to present day
is analyzed, by comparing simulations GD,oclhoc and
GDyoclp;. In both simulations, the GHG and ADE forcing
are fixed at the present-day level, while offline N, fields
for preindustrial and present-day conditions are imposed,
respectively, in each simulation. The changes in key cli-
mate variables (GDyoclooc — GD2oclpr) are summarized in
Figures 9 and 10 and the first column in Tables 7 and 8.

[44] The maximum increase of N, in liquid stratiform
clouds (+100 to +400 cm ) is predicted to occur over 30—
60°N, from the surface to 700 hPa, as shown in the latitude-
pressure profile in Figure 9a. The latitudinal distribution of
changes in N, at 850 hPa in Figure 10a reveals that the
estimated increase in NV, is more pronounced in June—July—
August (JJA, dotted line), and located at higher latitudes,
than the increase in December—January—February (DJF,
gray solid line). Over the region of maximal N, increase,
autoconversion rates are predicted to decrease, which leads
to increased liquid cloud water mixing ratio (+1 to +3 ppmm)
in the low and midtroposphere in NH, as shown in Figure 9b.
For the change in droplet size, the effect of larger N,
dominates that of increased cloud water, as the predicted .,
in warm stratiform cloud decreases by more than 1 pm
(Figure 9c). Around 400 hPa over the Tropics, the cloud
droplet size is predicted to increase (Figure 9¢c, 0.2—1.5 pm),
owing to the higher cloud water in stratiform clouds (not
shown) and the relatively small change in N, estimated over
this region. Note that pure liquid stratiform clouds do not
frequently occur at this altitude over the Tropics, and
therefore the impact of increasing droplet size should be
small. The estimated change in cloud cover is small (<2% of
absolute amount in all latitudes) for both stratiform and
convective clouds, and therefore is not shown.

[45] As a result of increased cloud optical depths associ-
ated with smaller droplet size and higher cloud water in
warm stratiform clouds, negative changes in zonal mean
TOA SW CF of up to —5 W m™* are predicted over 30—60°N
(Figure 10b). The negative AIE forcing results in a predicted
global cooling of —1.12 K at the surface. Figures 9d and 9e
show that the predicted cooling leads to a decrease in
atmospheric water vapor. The maximum cooling near the
tropical tropopause is a result of vertical temperature con-
vective adjustment toward the moist adiabatic lapse rate; the
pattern is similar to the simulated global warming owing to
increased GHG [Manabe and Wetherald, 1975], but with an
opposite sign. As displayed in Figures 9g and 10c, the
surface temperature is reduced more significantly in NH
(-1.46 K) and over land (—1.31 K), with a prominent
cooling over the northern middle to high latitudes. Over 30—
50°N, the surface cooling is predicted to be more substantial
in JJA; this is also the season of maximum N, increase and
negative AIE forcing, indicating that the cooling is a direct
response to perturbation of V.. North of 50°N, however, the
most significant cooling is estimated to occur in DJF, when
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Table 7. Changes in Annual Mean Cloud Properties Between the
Equilibrium Climates®

GDjoclroc = GDaoclic = GDaiclic —
Regions  GDyoclpr GDsocloc GDxocloc
Acolumn N, Global +2.96 +1.53 +1.80
(101 m %)
Ocean +0.84 +0.28 +0.38
Land +9.68 +5.64 +6.18
NH +5.37 +2.65 +3.40
SH +0.58 +0.49 +0.21
Ar, at cloud t Global -0.78 -0.27 (+0.05)
op® (;im)
Ocean —0.44 -0.20 +0.03
Land -1.84 —-0.50 —-0.06
NH -1.15 -0.31 -0.19
SH -0.40 -0.23 +0.20
ALWP (g m?) Global —4.03 —0.60 +20.45
Ocean —4.73 (-0.19) +22.26
Land -2.26 -1.66 +15.84
NH —6.46 (-1.03) +24.00
SH -1.61 (-0.17) +16.89
ALWP (strat.) Global +1.50 (+0.24) +2.93
(gm™)
Ocean +1.55 +0.42 +2.34
Land +1.44 (-0.25) +4.57
NH +2.20 (+0.19) +3.77
SH +0.79 (+0.27) +2.10
Astrat. cloud Global +0.71 +0.37 -2.00
(% (absolute))
Ocean +0.61 +0.40 -1.96
Land +0.97 (+0.32) -2.08
NH +0.63 +0.34 -1.66
SH +0.80 +0.41 -2.33
ATOA SW CF Global -1.61 —0.69 —1.88
(Wm™)
Ocean -1.42 —0.88 -1.72
Land -2.08 (-0.22) -2.29
NH —2.48 —0.94 -2.35
SH (-0.74) (—0.44) -1.42
Anet CF (W m™2)  Global —1.48 —0.62 -2.18
Ocean -1.13 -0.72 -2.20
Land -2.37 -0.39 -2.14
NH -2.58 —0.86 -2.34
SH (-0.39) (-0.39) -2.03

"Differences insignificant relative to the 95% confidence intervals are
parenthesized. The usual ¢ test takes into account the temporal correlation
in each set of sample data (i.e., the global, land, ocean, or hemispherical
annual average of the climate variable of interest in the last 20 years of
each simulation). The sample sizes are reduced to the equivalent sample
sizes n, and m,. The 95% confidence interval equals to 1.98 x s x (1/
ne+1/me)0'5 if n, + m, > 30, where s is the pooled standard deviation; for
ne + m, < 30, the interval is determined by a lookup table. For a more
detailed explanation, please refer to Zwiers and von Storch [1995].

®Values reported here are not scaled by 2!% as in the model-satellite
comparison.

the change in NV, and TOA SW CF is relatively small. This
pattern of predicted temperature response is similar to those
found in previous studies investigating present-day AIE
impacts [Rotstayn et al., 2000; Williams et al., 2001;
Rotstayn and Lohmann, 2002; Kristjansson et al., 2005].
[46] The amplification and the difference in the seasons of
peak forcing and surface temperature in the northern high
latitudes are likely related to ice-albedo feedback as well as
feedback mechanisms involving sea ice, ocean-atmosphere
heat exchange, and atmospheric dynamics, as analyzed by
Williams et al. [2001] and Kristjansson et al. [2005]. Note
that the previous studies have predicted a more prominent
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polar amplification, which is likely associated with the dif-
ference in sea ice models, and the fact that aerosol con-
centrations were predicted interactively in those studies.
However, considering the uncertainties in predicted sea ice
and insufficient knowledge of the radiative impact of polar
stratiform clouds, the actual mechanism of polar response to
AIE requires more detailed studies [Garrett and Zhao,
2006].

[47] The predicted response in global circulation to sur-
face cooling is a southward displacement of the ITCZ,
which manifests itself by the change of distribution of pre-
cipitation in Figures 9h and 10d. Figure 9f shows the
changes in zonal mean mass stream function. The more
substantial cooling in the NH induces a weak anomalous
clockwise flow over the Tropics between 20°S and 20°N,
but is mostly statistically insignificant. In general, a slower
hydrological cycle is predicted in response to the perturba-
tion of N, from preindustrial to present day. Global annual
mean precipitation is predicted to decrease by 0.10 mm d™’
(3.36%), especially in NH (-0.19 mm d™"). The predicted
decrease in stratiform precipitation is only 0.01 mm d', and
the precipitation reduction comes mostly from lower
convective precipitation, owing to decreasing moisture in
the atmosphere. The overall effects of all the feedbacks
lead to an increase in global mean LWP in stratiform cloud
(+1.50 g m %) but a decrease in total LWP (—4.03 g m 2).
The global mean change in TOA net CF is —1.48 W m 2.

Table 8. Similar to Table 7, but for Changes in Annual Mean
Temperature, Precipitation, Hydrological Sensitivity, and Surface
Radiative Fluxes

GDsochhoc = GDaochic = GDachic —
Regions GD>oclpr GD>oclroc GDxoclc
AT, (K) Global -1.12 -0.47 +4.60
Ocean -0.99 -0.43 +4.20
Land —1.46 —-0.58 +5.61
NH -1.31 -0.47 +4.63
SH (-0.93) —0.48 +4.58
Aprecip. Global —-0.10 —-0.05 +0.26
(mm d")
Ocean —-0.08 —0.04 +0.32
Land -0.16 -0.09 +0.12
NH -0.19 -0.06 +0.29
SH (-0.02) —-0.04 +0.23
Aprecip. (strat.)  Global —-0.01 —-0.01 —0.01
(mm d)
Ocean -0.01 —-0.01 —0.02
Land -0.04 -0.02 +0.02
NH -0.01 -0.01 —0.03
SH (—0.00) -0.01 +0.01
Aprecip./ AT Global +3.00 +3.57 +1.90
(%K™
Asurface SW Global -2.38 —-1.08 +0.91
flux (W m?)
Ocean -1.90 -1.07 +0.91
Land -3.60 -1.12 +0.92
NH -2.93 -1.06 +0.44
SH -1.83 -1.12 +1.38
Asurface LW Global —0.84 —-0.39 +6.17
flux (W m?)
Ocean -1.22 -0.53 +7.12
Land (+0.12) (-0.04) +3.75
NH —-1.00 -0.39 +6.02
SH —0.68 -0.39 +6.32
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Figure 11. Similar to Figure 9 but for present-day climate response to perturbation of AIE from present
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Figure 12. Similar to Figure 10 but for present-day climate
response to perturbation of AIE from present day to year
2100 (GD2oclaic = GDzoclaoc)-

5.3. Perturbations of V. from Present Day to Year 2100
to Equilibrium Climate

[48] The equilibrium climate response to the AIE pertur-
bation from present day to year 2100 is diagnosed here, by
comparing simulations GDoclrc and GD,oclpoc. Present-
day GHG and ADE forcings are used in both simulations,
while the imposed N, values in each simulation are for
present day and year 2100, respectively. The results
(GDyoclr1c — GDaoclhoc) are presented in Figures 11 and 12
and the second column of Tables 7 and 8.

[49] In NH, the predicted N. increase from present day to
year 2100 is smaller than that from preindustrial to present
day, and the interhemispheric contrast is not as great. Over
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NH high latitudes, N, is predicted to slightly decrease (—15
to —20 cm ) in JJA (Figures 11a and 12a), corresponding to
the estimated reduction in sulfate aerosols in this region
[Chen et al., 2007]. Also, the latitude of peak increase in N,
is predicted to shift southward to 30°N. The changes in NV, in
the lower troposphere lead to a slight increase in cloud water
(+0.1 to +0.5 ppmm) and a decrease in 7, in warm stratiform
clouds (—0.2 to —0.5 um) (Figures 11b and 1lc). The
response in cloud cover is, again, insensitive to the pertur-
bation in V.. The predicted global mean surface cooling is
—0.47 K, with small cooling over low and midlatitudes and
amplified cooling over the polar regions (Figures 11g and
12¢). Statistically significant cooling of —0.5 to —1.0 K is
predicted over NH continents in midlatitudes to high lati-
tudes. The maximum cooling near the tropical tropopause
associated with water vapor feedback is still evident.

[s0] The response in general circulation to the pattern of
predicted surface cooling is mostly insignificant. A similar
southward displacement of the ITCZ is predicted, leading to
a suppression in annual mean precipitation around the
equator by as much as 0.4 mm d ™' (Figure 11h and 12d). The
predicted global mean precipitation reduction from present
day to year 2100 is 0.05 mm d ' (1.68%). The predicted
global mean LWP also exhibits a decrease (—0.60 g m 2).

5.4. Combined Effects of GHG, ADE, and AIE From
Present Day to Year 2100 on Equilibrium Climate

[s1] The differences between the equilibrium climates
(GDy1clric — GDaoclhoc), revealing the response to the
combined forcing of GHG, ADE, and AIE from present day
to year 2100, are outlined in Figures 13 and 14 and the third
column of Tables 7 and 8. The changes in N, are similar to
those in section 4.3 and hence not displayed. As expected,
the general pattern of the response is largely dominated by
the GHG-induced warming. The increase of equilibrium
global surface temperature from present day to year 2100 is
predicted to be 4.60 K. The warming is prominently
amplified in polar regions by snow and ice albedo feedback
and near the tropical tropopause through moist adiabatic
adjustment (Figures 13a, 13d, and 14a). A broadened and
weakened Hadley cell is revealed in the predicted difference
in mass stream function (Figure 13c). Global annual mean
total precipitation is predicted to increase by 0.26 mm d ™.
The latitudinal pattern of excess precipitation (total precip-
itation minus total evaporation) is enhanced (Figure 14b),
owing to the effects of increasing water vapor (Figure 13b)
and increasing poleward moisture transport (not shown), as
discussed by Held and Soden [2006]. A poleward shift of
the storm tracks is also predicted (not shown). The predicted
change in Hadley circulation, excess precipitation, and
storm track, are consistent qualitatively with the projected
future climate in most of the IPCC Fourth Assessment
Report (AR4) models in response to GHG induced warming
[e.g., Mitas and Clement, 2005; Held and Soden, 2006;
Meehl et al., 2007].

[52] It is of interest to compare this present day to year
2100 equilibrium climate response to that predicted by the
standard version of GISS III (i.e., [GD,;c — GDaoc] versus
[GDZICIZIC - GDzoclzoc]). ACCOrding to Table 9, the
modified GISS III, which incorporates AIE-related strati-
form clouds, predicts a slightly weaker warming (4.60 K
versus 4.85 K), less precipitation increase (0.26 mm d '
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Figure 13. Climate responses to combined effects of greenhouse gas (GHG) and anthropogenic aerosol
direct and indirect effects from present day to year 2100 (GD,;clz1c — GD2oclaoc): vertical zonal profiles
of changes in annual mean (a) temperature (K), (b) specific humidity (10 kg H,0 (kg air) "), and gc)
mass stream function (10'° kg s™"); annual mean changes in (d) 7, (K) and (e) precipitation (mm d )
Global average values are given in the upper right corner of Figures 13d and 13e. Note the color

scales are different from those of previous figures.

versus 0.30 mm d '), and smaller reduction of absolute
cloud cover (—2.24% versus —2.38%). The most pronounced
difference between the predicted responses is the reversed
sign in the change of stratiform cloud precipitation:
~0.01 mmd" in the modified GISS III versus +0.05 mm d '
in the standard GISS III. Figures 14c and 15c show that the
standard model predicts minimal change of stratiform
precipitation over Tropics and subtropics, in contrast to the
predicted decrease of stratiform precipitation of 0.2 to
0.3 mm d' in the modified model over the same regions.
This reveals the impact of the AIE on suppressing stratiform
precipitation. The predicted latitudinal distributions of tem-
perature, precipitation, and circulation changes are similar in
both versions (Figures 14 and 15).

5.5. Hydrological Sensitivities

[53] The hydrological sensitivity is defined as the ratio of
the percentage change in global total precipitation to the
global surface temperature change. This section compares
the hydrological sensitivity of AIE from 20C to 21C esti-
mated in the current study with those reported in two related
studies, Chen et al. [2007] and Liao et al. [2009] (Table 10),
and in the literature. Chen et al. [2007] simulated the
equilibrium climate response to ADE and GHG from
present day to year 2100, based on SRES A2 scenario,
using the 9 layer GISS II' GCM. The 20C and 21C offline
aerosol fields used in that study are very similar to those in
the present work (before interpolation from 9 to 23 ver-
tical layers). Liao et al. [2009] performed fully coupled
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Figure 14. Climate responses to combined effects of GHG
and anthropogenic aerosol direct and indirect effects from
present day to year 2100 (GD; cl1c — GDaoclroc): zonal
mean changes in (a) 7, (K), (b) excess precipitation (total pre-
cipitation minus evaporation, mm d "), and (c) precipitation
from stratiform clouds (mm d ™). Black solid lines, annual
(ANN) average; gray lines, DJF; and dashed lines, JJA.

chemistry-aerosol-climate simulations for present day and
year 2100. Since the model physics, the length of integra-
tions, and number of years for statistical analyses differ in
these three studies, only qualitative comparisons are ad-
dressed below.

Table 9. Change in Global Annual Mean Values of Key Climate
Variables Between the Present Day and Year 2100 Equilibrium
Simulations, Predicted by the Modified and Standard Version
of GISS 1II

GDsic = GDyoc GDaichaic — GDaoclaoc
AT, (K) +4.85 +4.60
Aprecip. (mm d) +0.30 +0.26
Aprecip. (strat.) (mm d) +0.05 -0.01
Aprecip./ AT, (% K ') +2.07 +1.90
Atotal cloud (% (absolute)) -2.38 -2.24
Astrat. cloud (% (absolute)) -2.02 -2.00
Anet CF (W m™?) -0.79 -2.18
ALWP (g m?) +20.78 +20.45
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Figure 15. Similar to Figure 14, but for climate responses
from present day to year 2100 predicted by the standard
version of GISS III (GD,;c — GDyoc).

[54] For the hydrological sensitivity of individual forcing,
alone, the reported value GHG forcing is 2.19% K" in the
work of Chen et al. [2007], as compared to 1.5% K ' in the
work of Feichter et al. [2004] (ECHAM4, GHG from PI to
present day), and 1.8% K" in the work of Kirkevdg et al.
[2008a] (CCM—Oslo, CO, doubling). The hydrological
sensitivity for ADE alone from 20C to 21C is —7.34% K
in GISS GCM 1II', as reported by Chen et al. [2007]. The
value is negative because the anthropogenic aerosols,
including BC, are assumed to be internally mixed. The
absorbing aerosols are predicted to lead to a small global
mean surface warming (+0.14 K), as regional warming by
absorbing aerosols over reflective surfaces offsets the
regional cooling by the increase of scattering aerosols.
However, the associated global mean precipitation is
slightly suppressed (—1.03%), owing to the dominant effects
of reduced evaporation and enhanced stability over regions
exhibiting surface cooling. The hydrological sensitivity for
AIE forcing reported in the present study is 3.00% K" from
PI to 20C and 3.57% K" from 20C to 21C (Table 8).

[55] For combined GHG, ADE, and AIE forcing, the
hydrological sensitivity in the present study is 1.90% K
for 20C to 21C. The reported value is —1.90% K" for PI to
present day in the work of Feichter et al. [2004], and 0.30 or
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Table 10. Comparisons of Present Day to Year 2100 Hydrological Sensitivity Between the Present Study and Two Previous Related

Studies
Types of Forcing GHG ADE GHG + ADE GHG + ADE AIE GHG + ADE + AIE
Study Chen et al.  Chen et al.  Liao et al. [2009] Present study Present study Present study
[2007] [2007]
GCM GISS II' GISS II' CACTUS unified Standard Modified Modified
model (GISS II') GISS 11T GISS 11T GISS 11T
Predictions of aerosols and/or — Offline Online with fully Offline Offline Offline

N, in the simulations

Integration (diagnostic period) (years) 80 (last 30) 80 (last 30)

Equilibrium response of global 7 (K) +5.31 +0.14
Equilibrium response of global precip. (%) +11.64 —-1.03
Hydrological sensitivity (% K ) +2.19 -7.34

coupled chemistry

and climate

35 (last 20) 100 (last 20)  100+30 (last 20) 100+30 (last 20)
+6.00 +4.85 -0.47 +4.60
+9.00 +10.03 —-1.68 +8.72
+1.5 +2.07 +3.57 +1.90

0.24% K' for a combined 2XCO, and changed aerosol
emissions from PI to present day or year 2100, respectively,
in the work of Kirkevdag et al. [2008a]. In the multimodel
ensemble average in the IPCC 2007 report [Meehl et al.,
2007], considering transient response to GHG and all
other forcings with the A2 scenario from 20C to 21C, the
hydrological sensitivity is 1.45% K '. These very different
values indicate high uncertainties associated with the
hydrological processes in the model when the effects of
aerosols and GHG are included simultaneously. Note that
Feichter et al. [2004] and Kirkevdg et al. [2008a] both
simulated full aerosol-cloud-climate interactions. The
hydrological sensitivity may be highly sensitive to the
degree of “coupling” in the model. For example, Liao et al.
[2009] calculated the fully coupled response to ADE and
GHG changes from 20C to 21C with the GISS GCM 1II' and
derived a hydrological sensitivity of 1.5% K, smaller than
that for GHG with offline ADE in the standard GISS III in
the present study (2.07% K ™).

6. Summary and Conclusions

[s6] To investigate the climatic impacts of aerosol indirect
effects with GISS III GCM, explicit dependence on N, has
been introduced to the formulations of optical depth and
autoconversion rates for liquid stratiform clouds in the
GCM, to account for both cloud albedo and lifetime effects.
Fully coupled chemistry-aerosol-climate simulations with
the CACTUS Unified Model have been carried out to obtain
offline aerosol mass concentrations. Additionally, using si-
mulations with the GISS-TOMAS microphysics model and

the FN CCN activation parameterization, grid-by-grid cor-
relations between aerosol soluble ion concentration and N,
have been established. The diagnostic correlations have
been applied to the aerosol mass predicted in the Unified
Model to compute corresponding offline N, fields.

[57] Two 100 year simulations using the standard GISS III
have been carried out, each with GHG and aerosol direct
forcing from offline aerosol mass for present day or year
2100, to provide starting climates for the four equilibrium
climate simulations using the GISS III with AIE-related
implementation, each integrated for 30 years. By imposing
offline monthly averaged N, for PI, present day, and year
2100 in each simulation, the climate responses to the per-
turbations of N, have been analyzed. The general patterns
of the climate responses are summarized below and in
Table 11.

[s8] The perturbation of N, from PI to 20C, of which the
full AIE forcing is —1.67 W m 2, is predicted to cause an
equilibrium global surface cooling of 1.12 K, with maxi-
mum cooling at the NH high latitudes. The predicted
interhemispheric temperature gradient induces an anoma-
lous general flow between 20°S and 20°N, and a southward
displacement of the ITCZ. The equilibrium global mean
precipitation reduction is 0.10 mm d ', with a corresponding
hydrological sensitivity of 3.00% K'. The results are con-
sistent with previous GCM studies on preindustrial to
present-day AIE forcing.

[59] The perturbation of N, from 20C to 21C, which is
weaker in magnitude and has different latitudinal distribu-
tion than that from PI to 20C, results in a full AIE forcing
of —0.58 W m 2. A small decrease of 0.47 K in predicted

Table 11. Summary of Patterns of Equilibrium Climate Response in the Present Study®

Perturbation of GHG, ADE and N,

Perturbation of N, From PI to 20C

Perturbation of N, From 20C to 21C

From 20C to 21C

Change in N,
Surface temperature
General circulation

Precipitation

Increase globally with maxima
over 30-60°N
Cooling globally, with amplification
especially at NH high lat.
Weak clockwise flow over the
Tropics; southward shift of ITCZ
Reduced global average; maximum
decrease over the Tropics; slightly
enhanced around 15°S

Maximum of increase over 15-45°N;
slight decrease north of 60°N in JJA
Small cooling over the Tropics and

subtropics; polar amplified
Weak clockwise flow over the Tropics;
southward shift of ITCZ
Slightly reduced global average;

maximum decrease over the Tropics;

Maximum of increase over 15-45°N;
slight decrease north of 60°N in JJA

Warming globally with polar amplification

Broadened Hadley Cell; strengthened
ascending branches in convection zone
Enhanced global average with maximum
at Equator; decreased stratiform
precipitation over 45°S to 45°N

“JJA, June—July—August.
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global surface temperature, with small interhemispheric
contrast, and a weak response in precipitation and general
circulation is predicted. The location of the ITCZ does not
show a significant shift. The hydrological sensitivity has a
similar value of 3.57% K', despite the AIE forcing is
much smaller than that from PI to 20C, indicating that the
response of the hydrological cycle to AIE forcing in GISS
II is likely characterized by a value of sensitivity larger
than 3.0.

[0] In general, the simulated equilibrium climate
response to the combined forcing of GHG, ADE, and AIE
from present day to year 2100, dominated by GHG warming
effects, agrees with previous GCM studies, with a global
temperature increase of 4.60 K, maximized warming in
polar regions and the tropical tropopause, broadened Hadley
cell, and enhanced precipitation in the tropical convection
zone and midlatitudes to high latitudes. The inclusion of
AlE-related processes in the modified version of GISS III
leads to a decrease in predicted stratiform precipitation and a
hydrological sensitivity of 1.90% K ', as compared to the
increase in stratiform precipitation and the higher hydro-
logical sensitivity of 2.07% K" predicted by the standard
model.

[61] On the basis of the sensitivity calculation of the AIE
forcing to the assumption of minimum N, values, when a
smaller minimum N, is used, the present-day AIE forcing
only changes slightly, whereas the future AIE forcing is
enhanced by 12%. This sensitivity indicates the climate
responses predicted in the present study would be robust for
AIE from PI to 20C, while those for AIE from 20C to 21C
would be enhanced/decreased, given a smaller/larger value
of minimum N..

[62] Finally, we note that the indirect effects on ice clouds
and convective clouds are not considered in the present
study. In addition, offline aerosols and droplet number
concentrations have been used. Although the aerosol mass
was derived by the fully coupled model, in the equilibrium
climate calculations, feedbacks of temperature, precipita-
tion, cloud, and transport on distribution of aerosol and
droplet number were not accounted for. Evaluating the full
indirect effects and the full coupling between tropospheric
chemistry, aerosols, clouds, and climate is worthy of a future
study.
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