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• The LULCC is found to enhance O3 with
a maximum center of 1-2 ppbv in NCP
but cause moderate reduction in the
South.

• The LULCC-induced changes in isoprene
emissions show stronger impacts than
dry deposition in affecting the O3
budget.

• The inconsistency is attributed to the
background chemical regimes with pos-
itive O3 changes over VOC-limited re-
gions but negative changes in NOx-
limited regions.
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A B S T R A C T

China implemented continuous forestation and experienced significant greening tendency in the past several
decades. While the ecological project brings benefits to regional carbon assimilation, it also affects surface ozone
(O3) pollution level through perturbations in biogenic emissions and dry deposition. Here, we use a coupled
chemistry-vegetation model to assess the impacts of land use and land cover change (LULCC) on summertime
surface O3 in China during 2000–2019. The LULCC is found to enhance O3 by 1–2 ppbv in already-polluted areas.
In contrast, moderate reductions of − 0.4 to − 0.8 ppbv are predicted in southern China where the largest forest
cover changes locate. Such inconsistency is attributed to the background chemical regimes with positive O3
changes over VOC-limited regions but negative changes in NOx-limited regions. The net contribution of LULCC to
O3 budget in China is 24.17 Kg/s, in which the positive contribution by more isoprene emissions almost triples
the negative effects by the increased dry deposition. Although the LULCC-induced O3 perturbation is much lower
than the effects of anthropogenic emissions, forest expansion has exacerbated regional O3 pollution in North
China Plain and is expected to further enhance surface O3 with continuous forestation in the future.
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1. Introduction

Tropospheric ozone (O3) is one of the detrimental air pollutants
directly threatening human and ecosystem health (Monks et al., 2015).
It is mainly generated through the reactions between nitrogen oxides
(NOx = NO+NO2) and volatile organic compounds (VOCs) in the pres-
ence of sunlight, and is removed by dry/wet deposition and chemical
reactions (Wang et al., 2020). Surface O3 pollution is getting severe in
China due to the fast industrialization and urbanization that generates a
large amount of anthropogenic precursors (Li et al., 2019; Lu et al.,
2018b). The maximum daily 8-h average O3 (MDA8 O3) concentration
in 2016–2017 increased by about 20 % compared to 2013–2014, espe-
cially in North China Plain (NCP), Yangtze River Delta (YRD), and Pearl
River Delta (PRD) (Lu et al., 2018a). Simulations also showed that
summer MDA8 O3 concentrations in China increased by ~1.9 ppbv/yr
from 2013 to 2019, with meteorology contributing 0.7 ppbv/yr and
anthropogenic emissions contributing 1.2 ppbv/yr (Li et al., 2020).The
Clean Air Action (CAA) initiated at 2013 showed good effects in PM2.5
control but failed to alleviate O3 pollution (Chen et al., 2021; Zhai et al.,
2019), even with the more stringent regulation of anthropogenic VOCs
emissions after 2018 (Li et al., 2020). It is challenging to mitigate O3
level due to its nonlinear dependence on precursors (Calfapietra et al.,
2009) and the large contributions from the natural sources (Wang et al.,
2011).

Both NOx and VOCs can be emitted from natural systems. For NOx,
the lightning and soil are the top two natural sources, which are about
10 TgN yr− 1 (Hudman et al., 2012; Vinken et al., 2014; Weng et al.,
2020) but much smaller than the total of 30 TgN yr− 1 from anthropo-
genic emissions (Huang et al., 2017; Vinken et al., 2014). In contrast,
global biogenic VOCs (BVOCs) emissions are estimated to be 1150 TgC
yr− 1, far exceeding the anthropogenic sources and accounting for>90%
of the total VOCs emissions (Guenther et al., 2012). Therefore, BVOCs
(especially isoprene) are important precursors for O3 generation even
for the regions with large anthropogenic emissions. For example, Lu,
et al. (Lu et al., 2019) estimated that BVOCs emissions contributed about
15 ppbv to the summer MDA8 O3 concentrations in eastern China in
2016–2017. Mo et al. (2018) found that the isoprene emissions
accounted for half of the total O3 formation potential (OFP) during the
summer noontime in Beijing. Zhang et al. (2017) pointed out that BVOCs
contributed 10–19 % to O3 concentrations during episode days in the
United States. Meanwhile, surface O3 can be removed through dry
deposition, which is dominated by stomatal uptake over the vegetated
land. Such process usually reaches the peak values around noontime and
acts as an important sink of surface O3 (Cao et al., 2022). Both the
BVOCs emissions and the stomatal uptake are modulated by climatic
conditions. The strong warming promotes BVOCs emissions and results
in high level of O3 pollution (Cao et al., 2021; Wang et al., 2019).
Meanwhile, the drought conditions can inhibit stomatal conductance of
vegetation, leading to the increase of surface O3 concentrations (Lei
et al., 2022).

In recent years, a significant greening tendency was observed in
China (Chen et al., 2019; Yi et al., 2023). Such change is tightly related
to the land use and land cover change (LULCC) following the national
ecological projects (Yue et al., 2021). According to the inventory of the
State Forestry Administration, China’s forest coverage increased from
16 % in 1990 to 23 % in 2020 (http://www.forestry.gov.cn). While
previous studies have examined the LULCC impacts on climate and
environment, only a few have investigated contributions of LULCC to
regional O3 pollution in China (Table S1). Changes in forest coverage
may perturb surface O3 concentrations through both the BVOCs emis-
sions (Chen et al., 2018) and the dry deposition (Gong et al., 2020). Ma
et al. (2023) designed five parallel experiments with different LAI and
land cover satellite datasets, finding that the relative difference excee-
ded 52 % in O3 in central and eastern China. The result focused on the
uncertainties of input database instead of continuous land cover
changes. With the GEOS-Chem v9–02 model, Fu and Tai (2015) found

that the LULCC caused a reduction of surface O3 in most parts of East
Asia during the summer of 1980–2010, mainly due to the enhanced dry
deposition following the increased LAI. In contrast, Zhang et al. (2020)
applied the WRF-Chem v3.7 model and revealed that LULCC increased
surface O3 by 1 % – 2 % in the metropolitans and 4 % – 5 % in the low-
populated areas over the NCP. These studies explored the LULCC im-
pacts in the earlier period before the establishment of air-quality
monitoring network. As a result, the inadequate model validations led
to the large uncertainties in their quantifications of LULCC effects.
Furthermore, they mainly focused on the polluted regions in central
China instead of the southern part where most of large-scale “greening”
located (Wang et al., 2019). The impacts of LULCC on surface O3 at the
national scale for the recent decades remained unclear.

In this study, we explore the impacts of LULCC on surface O3
pollution in China during the summer (June–August) of 2000–2019. We
perform sensitivity experiments using the coupled chemistry-vegetation
model GEOS-Chem-YIBs (Lei et al., 2020) to isolate the LULCC effects on
BVOCs emissions and O3 dry deposition. The global simulations with
coarse resolution are performed to quantify the long-term trend of sur-
face O3 in China. Meanwhile, the regional simulations with fine reso-
lution are conducted to better evaluate model performance and to
understand the LULCC impacts on air pollution in recent years. For all
simulations, we implement annually varied land cover data into the
model, which dynamically predicts leaf area index (LAI) so as to affect
both the BVOCs emissions and O3 dry deposition.

2. Method and data

2.1. GEOS-Chem-YIBs model

We use the coupled chemistry-vegetation model GEOS-Chem-YIBs to
simulate O3 changes in China. GEOS-Chem is a global 3-D chemical
transport model with the well-established NOx-Ox-hydrocarbon-aerosol
chemistry mechanism for gas-phase pollutants and aerosols (Park et al.,
2004). The model is driven with meteorological forcing from the
Modern-Era Retrospective analysis for Research and Application version
2 (MERRA2) (Rienecker et al., 2011). The emissions from different
sources, regions, and species are calculated from the combinations of
various inventories through the online Harvard–NASA Emissions
Component (HEMCO) module (Keller et al., 2014; Lin et al., 2021).
Anthropogenic emissions are adopted from the Community Emissions
Data System (CEDS) for global domain (Hoesly et al., 2018). The MIX
inventory for Asian domain (Li et al., 2017b), and the Multi-resolution
Emission Inventory for China (MEIC) within Chinese domain (Li et al.,
2017a; Zheng et al., 2018).

The Yale Interactive terrestrial Biosphere (YIBs) model is a well-
evaluated vegetation model. The model can dynamically predict LAI
and tree height based on vegetation photosynthesis and carbon alloca-
tion for nine plant functional types (PFTs), including evergreen nee-
dleleaf forest (ENF), deciduous broadleaf forest (DBF), evergreen
broadleaf forest (EBF), shrubland, tundra, C3/C4 grasses, and C3/C4
crops (Yue and Unger, 2015). Leaf-level isoprene emission is calculated
using the photosynthesis-dependent scheme (Unger et al., 2013), which
considers the joint effects of temperature, photosynthetic rate, and
carbon dioxide. Stomatal conductance is connected to leaf photosyn-
thesis through the Ball et al. (1987) scheme. The YIBs has joined the
intercomparison projection of TRENDY for vegetation models since the
year 2020 and showed reasonable performance in most of biospheric
parameters (Friedlingstein et al., 2020).

By implementing YIBs into GEOS-Chem, the GEOS-Chem-YIBs (GC-
YIBs) model builds the interactions between atmospheric chemistry and
land ecosystems (Lei et al., 2020). Within this framework, the YIBs
dynamically predicts BVOCs emissions, daily LAI, and stomatal
conductance, which are fed into GEOS-Chem to calculate O3 formation
and dry deposition. In turn, the simulated surface O3 by the chemical
model influences stomatal conductance, carbon fluxes and vegetation
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growth in the YIBs model through a semi-mechanistic O3 damage
scheme (Sitch et al., 2007; Unger et al., 2020). Previous studies have
demonstrated the good performance of GC-YIBs model in simulating the
spatiotemporal variations of LAI, O3 concentrations, and dry deposition
velocity against both site-level and satellite-based observations (Gong
et al., 2021; Lei et al., 2020; Lei et al., 2022; Lei et al., 2021).

2.2. Land cover change

We select the annual vegetation coverage data from the Land-Use
Model Intercomparison Project (LUMIP, https://www.cesm.ucar.
edu/projects/CMIP6/ LUMIP/), which has been used to drive global
climate models from historical and future simulations (Ge et al., 2022;
Lawrence et al., 2016). We convert the LUMIP vegetation types to the
YIBs PFTs based on two rules (Table S2). First, the similar species are
grouped for the same PFT in YIBs. For example, we aggregate C3 annual
crops, C3 perennial crops, and C3 nitrogen-fixing crops in the LUMIP to
the C3 crop in YIBs. Second, the generic forest coverage is downscaled
following the observed ratios of different forest types. The forested
primary and secondary lands from LUMIP are summed to derive the
total tree cover, and then allocated to EBF, ENF, DBF types in YIBs based
on their present-day ratios in the same grid from the land cover product
of Moderate Resolution Imaging Spectroradiometer (MODIS, http
s://modis-land.gsfc.nasa.gov/) averaged for 2001–2012.

The national forest inventory (NFI) was initially established in 1950,
and has developed into a comprehensive database with technological
innovation. The national statistics were derived from the aggregation of
provincial data within a five-year cycle, and the estimation of errors was
conducted through stratified sampling, providing convincing and
authoritative information on vegetation coverage (Zeng, 2015). How-
ever, the temporal variation of forest coverage from the LUMIP fails to
capture the observed trends during 1989–2018 as indicated by NFI
(Fig. 1c). As a result, we reconstruct historical LULCC data by per-
forming a backward extrapolation of LUMIP LULCC from 2014 to 1990
based on the following rules: (1) the growth rate of total tree cover in
China is consistent with that from NFI(0.36 % yr− 1) during 1990–2014;
(2) the spatial pattern of the changes in forest coverage is consistent with
that from MODIS version C5 data; (3) the trends of forest and non-forest
(excluding crops) areas in each grid are opposite, indicating that the
increase of forest area is accompanied by a loss of non-forest types. The
rule (3) is applied because observations suggested a simultaneous
reduction in shrubland and grassland in the past several decades

(Fig. S1).
We do not use the latest version (C6) of MODIS LULCC dataset

because it could not capture the afforestation tendency in China (Yue
et al., 2021). The MODIS C6 data showed that forest coverage increased
from 9.5 % to 10.3 % during 2001–2012, which is significantly different
from the 18.2 % to 21.6 % of NFI from 1999 to 2013. Instead, the earlier
version (C5) of MODIS LULCC showed a more consistent increase of
forest coverage from 16 % in 2001 to 21 % in 2012. However, the
MODIS version C5 data span only for 2001–2012. As a result, we
reconstruct the long-term LULCC data by adjusting LUMIP so that the
updated LULCC matches the spatial pattern of MODIS C5 retrieval
(Fig. S1) and the temporal trend of NFI (Fig. 1c). The improved LUMIP
shows high (>40 %) forest coverage in southern and northeastern China
(Fig. 1a), where the forest area increased steadily over the past three
decades (Fig. 1b). The maximum forest expansion is located in central
China along the border areas of Shaanxi, Sichuan, Chongqing, and Hubei
provinces, consistent with the observations from MODIS version C5
dataset (Fig. S1a). These changes in forest and shrubland area are similar
between the earlier (2001− 2012) and the recent (2014–2019) periods
(Fig. S1). Variations in the whole national (both urban and natural)
vegetation cover were considered in the new LULCC version. We
compared our LULCC data with the recently reconstructed national LCC
data from Yu et al. (2022b) (Fig. S2). Both datasets show consistent
spatial distributions with similar hotspots in the southern and north-
eastern China, achieving a high correlation of 0.87. Furthermore, the
correlation coefficient of temporal trends for the two datasets reaches
0.99. The total tree fractions in China calculated with our LULCC data
show consistent year-to-year variations with Yu et al. (2022b) (Fig. S2e),
though the forest domain is more localized in our product than the latter
dataset.

2.3. Sensitivity experiments

We perform a total of 7 sensitivity experiments with the GC-YIBs
model (Table 1). These simulations can be divided into two groups.
The first group (G1) includes global simulations at 4◦ × 5◦ (latitude by
longitude) resolution from 2000 to 2019, and the second group (G2)
includes nested-grid simulations over Asia with 0.5◦ × 0.625◦ resolution
during 2014–2019 using the boundary conditions output from the first
group. For the G1 group, we design one baseline simulation and three
sensitivity runs. The baseline run (G1_BASE) implements interannually
varied forcings including meteorological variables, LULCC, and

Fig. 1. The spatial distribution of (a) annual average and (b) long-term trend of forest coverage in China, and the (c) comparison of temporal variations with forest
inventory from 2000 to 2019.
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anthropogenic emissions. The other three runs apply the same model
configurations as G1_BASE but with fixed meteorology (G1_SENS_MET),
LULCC (G1_SENS_LULCC), or anthropogenic emissions (G1_SEN-
S_ANTH) at the year 2000. For the G2 group, we also perform one
baseline (G2_BASE) run with year-to-year forcings and one sensitivity
simulation with fixed LULCC at 2000. To isolate the contributions of
BVOCs emissions to O3 formation, we conduct an additional run
G2_SENS_LCISO with prescribed isoprene emissions output from the
G2_BASE.

The differences between baseline (e.g., G1_BASE) and sensitivity (e.
g., G1_SENS_LULCC) experiments represent the impacts of the specific
disturbance (e.g., LULCC) on O3 pollution in China. The differences
between G2_SENS_LCISO and G2_SENS_LULCC isolate the impacts of
LULCC-induced changes in isoprene emissions on surface O3. In addition
to sensitivity experiments, we diagnose the contributions of different
processes (e.g., emission, deposition, transport, mixing and convection)
to the changes of O3 concentrations using amass-balanced approach (Lei
et al., 2022). All simulations are spun up for 6 months to reach the
equilibrium between emissions and air pollutants.

2.4. Evaluation data and methods

Measurements of surface O3 are collected from the network of China
National Environmental Monitoring Center (CNEMC), which reports
hourly surface O3 concentrations at 1580 sites covering >450 cities.
Observational sites with missing values are eliminated, leading to a total
of 1564 sites for the model validations. We interpolate the simulated O3
concentrations to the site locations using a bilinear interpolation
approach, and calculate the correlation coefficient (R) and root mean
square error (RMSE) against observations as follows:

R =

∑n

i=1
(Mi − M)(Oi − O)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Mi − M)

2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Oi − O)2

√ (1)

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Mi − Oi)

2

n

√
√
√
√
√

(2)

where Mi and Oi are data pairs of simulated and observed O3 concen-
trations, respectively.

We also use gridded LAI data form the Global Land Surface Satellite
(GLASS) product (Ma and Liang, 2022) developed using the MODIS
retrieval. The GLASS LAI gap-fills the original MODIS data with a 0.25◦

× 0.25◦ spatial resolution and has been widely used for model valida-
tions (Wang et al., 2018; Xie et al., 2019; Yu et al., 2018).

3. Results

3.1. Model evaluations

We compare the simulated 2014–2019 summertimeMDA8O3 to site-
level measurements (Fig. 2). Both the model and observations show the
maximum O3 concentrations in NCP, and the high values in YRD and
Sichuan Basin (SCB) regions. The modeled O3 concentrations range from
24.2 to 93.9 ppbv, similar to the observed range of 22.3–99.5 ppbv for
all sites. A high correlation coefficient of 0.82 and low RMSE of 15.2
ppbv are achieved between observations and simulations at 1564 sites,
indicating a good performance of GC-YIBs model in capturing the spatial
distribution of O3 pollution in China. For the temporal variation, the
model reproduces the day-to-day changes of MDA8 O3 over northeastern
and southeastern China during the summer of 2014–2019 with corre-
lation coefficients of 0.63 and 0.68 in these two regions, respectively
(Fig. 2c). Nevertheless, the model on average overestimates MDA8 O3 by
18 % relative to the observed values. Such overestimation is also re-
ported by other chemical transport models (Dang and Liao, 2019; Gong
et al., 2020; Wang et al., 2021) and is possibly caused by the relatively
low horizontal resolutions and insufficient observational sites.

The modeled summer LAI is compared to the satellite retrieval from
the GLASS product (Fig. 3). Observations show high LAI in northeastern
and southern China (Fig. 3a) where most forest locates (Fig. 1a). Sim-
ulations in general capture such pattern but with higher LAI by 0.45 m2

m− 2 (13.2 %) in the South while lower LAI by 0.78 m2 m− 2 (22.5 %) in
the Northeast (Fig. 3c). For the period of 2014–2019, the GC-YIBs model
predicts increased LAI in southern China (Fig. 3d) though such simu-
lated trend is lower by 0.015 m2 m− 2 (31.8 %) than observations
(Fig. 3b). For the longer period of 2000–2019, the GC-YIBs model with
coarse resolutions also predicts reasonable distribution and temporal
trend of LAI in China, though the simulation shows lower magnitude
than observations (Fig. S3).

3.2. Impacts of LULCC on surface O3

LULCC caused large forest growth in southern China (Fig. 1b),
leading to the strong enhancement of regional LAI especially over
Sichuan, Chongqing, and PRD during 2014–2019 (Fig. 4b). Following
these changes, isoprene emissions increase in most of forest regions
especially in southern China (Fig. 4c). However, the relative changes of
isoprene emissions show the hotspots in NCP (Fig. S4c), where O3
concentrations are high (Fig. 2b) and the baseline BVOCs are low due to
limited forest coverage. Dry deposition velocity in general increases
following the changes of LAI with regional maximum enhancement up
to 0.02 cm s− 1 (10.4 %) over the southern and northeastern China
(Fig. 4d), indicating an increase of O3 removal by the forest expansion.

Following the LULCC-induced perturbations in LAI, isoprene emis-
sions, and dry deposition, surface MDA8 O3 concentrations show het-
erogeneous changes in China (Fig. 4a). Strong O3 enhancements up to
6.4 ppbv (6.9 %) are mainly located in the polluted areas such as NCP,
YRD, and SCB, where the background O3 is normally higher than 60
ppbv. The O3 formation in these regions is usually VOC-limited (Fig. S5)
due to the high anthropogenic emissions of NOx. As a result, the increase
of BVOCs from LULCC promotes the regional O3 pollution. In contrast,
the areas with negative changes of O3 are in general located at rural and
remote regions in the South with low background O3 and/or the NOx-
limited regime (Fig. S5). Particularly, the LULCC decreases in MDA8 O3
concentration decreases up to 2.69 ppbv (− 4.4 %) at the border of
Sichuan, Chongqing, and Shaanxi. For these regions, the high forest
coverage with large BVOCs emissions and the low emissions of anthro-
pogenic precursors result in the NOx-sensitive conditions. Consequently,
the excessive isoprene will react with O3 and reduce O3 concentrations
(Fu and Tai, 2015). Furthermore, the high dry deposition by forest
contributes to more O3 removal in these regions. Compared to the mean
state, the LULCC causes larger impacts on the O3 pollution extremes. The

Table 1
Summary of sensitivity experiments.

Name Configurations

Global simulations at 4◦ × 5◦ for 2000–2019

G1_BASE Interannually varied LULCC, meteorology, and anthropogenic
emissions

G1_SENS_LULCC The same as G1_BASE but land cover fixed to 2000
G1_SENS_MET The same as G1_BASE but meteorology fixed to 2000
G1_SENS_ANTH The same as G1_BASE but anthropogenic emissions fixed to 2000

Regional simulations in China at 0.5◦ × 0.625◦ for 2014–2019

G2_BASE Interannually varied LULCC, meteorology, and anthropogenic
emissions

G2_SENS_LULCC The same as G2_BASE but land cover fixed to 2000
G2_SENS_LCISO The same as G2_BASE but isoprene emissions are input offline

Y. Cao et al.
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LULCC-induced changes in the 95th percentile MDA8 O3 (Fig. S6b)
resemble that in mean O3 (Fig. 4a) but with more positive values. In
addition, considering the climate differences between the northern and
southern China, we further added spring and autumn months (April to
September) to the time period of study (Fig. S8) and achieved the same
conclusions.

We isolate the contributions of LULCC-induced changes in isoprene
emissions and dry deposition to O3 formation (Fig. 5). The increase of
isoprene emissions (Fig. 4c) contributes to additional O3 production by
up to 1.5 Kg s− 1 in SCB (the hotspot in Southwest), and about 0.1–0.5 Kg
s− 1 in NCP, YRD, and PRD (Fig. 5a). However, in other southwestern
regions surrounding SCB, the more abundant isoprene emissions inhibit
O3 formation by about − 0.1 to − 0.5 Kg s− 1. As a comparison, the in-
crease of dry deposition (Fig. 4d) causes moderately negative impacts
(− 0.01 to − 0.1 Kg s− 1) on O3 formation (Fig. 5b). In general, the
magnitude of O3 change by isoprene emissions (Fig. 5a) is much larger
than that by dry deposition (Fig. 5b), dominating the patterns of LULCC-
induced changes in O3 concentrations (Fig. 4a). On the national scale,
the increase of isoprene emissions result in a net O3 production of 62.0
Kg s− 1 while the increase of dry deposition causes a net O3 loss of − 23.0
Kg s− 1 during the summer of 2014–2019. Contributions of other pro-
cesses including transportation, mixing, and convection were explored
as well (Fig. S7). The effects of transportation (Fig. S7a) tend to buffer
the changes of air pollutants, thus showing contrary variations to dis-
tribution of LULCC-induced ozone changes (Fig. 4a). Influences of
mixing (Fig. S7b) and convection (Fig. S7c) caused by LULCC were
similar but smaller than that of dry deposition (Fig. 5b).

3.3. Comparison of LULCC impacts with other factors

We compare the contributions of anthropogenic emissions, climate
change, and LULCC to the changes of summer MDA8 O3 concentrations
in 2000–2019 (Fig. 6). The national emissions of anthropogenic VOCs

and NOx show increasing trends of 0.09 Tg C yr− 1 and 0.12 Tg N yr− 1,
respectively (Fig. S9). The most significant enhancement of emissions is
found in NCP, YRD, SCB, and PRD regions, where O3 pollution events
occur frequently (Fig. 2a). Compared to the simulations with fixed
anthropogenic emissions at the year 2000, GC-YIBs predicts widespread
increase of surface O3 due to the increased anthropogenic emissions in
the past two decades (Fig. 6a). Most of such O3 enhancement is located
in the East and South, with regional hotspots up to 20 ppbv in SCB and
YRD.

Temperature and radiation are key factors affecting O3 production.
On the national scale, both temperature and radiation show moderately
decreasing trends in the past two decades (Figs. S7c-S7d). Regionally,
the two meteorological parameters show heterogeneous patterns.
Temperature increases in the East and South but decreases in the
Northeast and Southwest (Fig. S10a). Solar radiation decreases in most
areas except for NCP (Fig. S10b). The joint increases of temperature and
radiation promote surface O3 up to 3.9 ppbv in NCP (Fig. 6b). In the
southern part, the warming effects outweigh the dimming effects,
leading to increased surface mean O3 by 1–3 ppbv. However, in the
northern part, the cooling (or the slight warming) and strong dimming
together reduces surface mean O3 by 2–4 ppbv.

The LULCC-induced O3 changes show consistent spatial patterns
between the periods of 2000–2019 and 2014–2019, though the magni-
tude of changes is lower in the former period in part due to differences in
spatial resolution (Fig. 6c and Fig. 4a). In addition, the fast growth of
anthropogenic emissions (Fig. S9) provides a more favorable environ-
ment for the exacerbation of O3 pollution in recent years with increased
BVOCs emissions from forest expansion. The contribution of LULCC to
O3 concentrations over the past 20 years (Fig. 6c) is much smaller than
that by anthropogenic emissions (Fig. 6a), but is comparable to the ef-
fects of climate change (Fig. 6b). Regionally, LULCC results in O3
enhancement of 1–2 ppbv in NCP and the moderate reduction of 0.4–0.8
ppbv in the Southwest. Such pattern resembles the observed O3 trend

Fig. 2. Evaluations of simulated 2014–2019 summertime surface O3 from G2_BASE run. Observations (a) from CNEMC network and simulations (b) from GC-YIBs
model show similar spatial distribution. Observed and simulated daily concentrations are compared for (c) North China and (d) South China. The (b) spatial and (c-d)
temporal correlation coefficients and RMSEs are shown on the panels. The domains of North China Plain (NCP), Yangtze River Delta (YRD), and Sichuan Basin (SCB)
are indicated on the map of (a).
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Fig. 3. Evaluations of leaf area index (LAI) from GC-YIBs during 2014–2019. The annual (a, c) average and (b, d) trend of LAI from (a, b) GLASS MODIS data and (c,
d) the GC-YIBs simulations are compared.

Fig. 4. Simulated changes in summertime surface mean (a) MDA8 O3 concentrations, (b) LAI, (c) isoprene emissions, and (d) O3 dry deposition velocity caused by
land use and land cover change (LULCC) in 2014–2019.
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(Wang et al., 2022), suggesting the important contributions of affores-
tation to the O3 pollution in China.

4. Conclusions and discussion

We explored the impacts of LULCC on surface O3 in China using a
coupled chemistry-vegetation model during 2000–2019. Afforestation
increases both isoprene emissions and dry deposition in northeastern
and southern China. Consequently, surface O3 shows widespread in-
crease over the northern part with a maximum center of 1–2 ppbv in
NCP but the moderate reduction in the South. The LULCC-induced
changes in isoprene emissions show stronger impacts than dry deposi-
tion in affecting the O3 budget. The net impact of LULCC on O3 con-
centrations is also affected by the background regime of chemical
reactions, with positive effects over VOC-limited regions but negative
effects in NOx-limited regions. Although the effects of LULCC are smaller
than anthropogenic emissions, forest expansion exacerbates regional O3
pollution in NCP in the past two decades.

Our results showed large contributions of LULCC to the enhanced O3
concentrations in NCP, where the absolute changes of isoprene emis-
sions are not significant (Fig. 4c). In contrast, the large enhancement of
isoprene emissions by LULCC results in O3 reductions in the Southwest.
Such inconsistency suggests the mismatch of forest expansion and
chemical regimes. Afforestation usually occurs in the rural areas with
limited anthropogenic emissions (NOx-limited), leading to O3 con-
sumption by the additional BVOCs. However, the small increase of
BVOCs over the polluted NCP (VOC-limited) provides a more favorable
condition for the O3 enhancement (Fig. S4c). Previous studies showed
both opposite and supporting results to our findings. Fu and Tai (2015)
and Yu et al. (2022a) found that LULCC led to the decline of O3 con-
centrations in NCP due to the increased O3 dry deposition. In these two
studies, dry deposition was diagnosed using the resistance-in-series

scheme of Wesely (1989), which had been proved to overestimate dry
deposition velocity compared to the Ball-Berry schemes (Cao et al.,
2022) used in our study. In addition, the dominant vegetation type in
NCP is cropland, whose dry deposition is much smaller than the trees in
southern China. Thus, the impacts of dry deposition were likely over-
estimated in their simulations. On the other hand, Zhang et al. (2020)
applied an improved big-leaf model which is more realistic in quanti-
fying the effects of LULCC on the removal of atmospheric pollutants.
They found that the influence of biogenic emissions on O3 budget could
not be offset by the O3 dry deposition in NCP, consistent with our
findings.

There are some limitations and uncertainties in our simulations.
First, the GC-YIBs model does not consider the interactions between
meteorology and vegetation. In addition to the variations in forest
coverage and LAI, LULCC modifies the energy balance of land surface
and the consequent climatic parameters that further perturb the trans-
port and removal of O3. Such climatic feedback deserves further in-
vestigations using the climate-vegetation-chemistry coupled models.
Second, biases may exist in the derived LULCC data for simulations.
Currently, the most widely used land use products fail to capture the
afforestation tendency in China. For example, the LUMIP data showed
limited changes in forest coverage (Fig. 1c) and the long-term land use
data by Hurtt et al. (2011) even suggested deforestation in China (Yue
et al., 2015). In the light of data limitation, we developed the localized
land use data with the adjustment for both spatial distribution and
temporal variations, and validated the simulated mean and trend of LAI
(Fig. 3) to minimize modeling uncertainties. We expect to use more
sophisticated land use data to explore the impacts of LULCC on O3
pollution in the future studies.

Despite these limitations, our study suggests considerable impacts of
LULCC on the O3 pollution in China over the past two decades. The
LULCC-induced O3 responses are dominated by BVOCs emissions, which

Fig. 5. Attribution of LULCC-induced changes of net O3 production in China (kg/s) to (a) isoprene emissions and (b) dry deposition during 2014–2019.

Fig. 6. Changes of summer mean MDA8 O3 in China due to the changes in (a) anthropogenic emissions, (b) meteorology, and (c) land cover during 2000–2019. The
national averages are shown on the panels. Please notice the differences in the color scales.
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show widespread enhancement in southern China but result in the
maximum O3 increment in NCP. Such inconsistency is attributed to the
background chemical regimes that determine the nonlinear responses of
surface O3 to the same enhancement of BVOCs. Although afforestation
may increase O3 level over the polluted regions, the magnitude is much
smaller than the enhancement caused by anthropogenic emissions. With
the more stringent emission control in the future, surface O3 pollution is
likely alleviated and the chemical regime may shift to be more NOx-
limited. We expect that afforestation may have smaller side effects on
surface O3 pollution in China under a greener climate scenario.
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